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Highlights 
Genome-scale metabolic modeling is 
a growing area of computational biol-
ogy, rich in biotechnology applica-
tions, including the study of human 
metabolism for drug development 
and the design of synthetic microbial 
communities for health environmental 
and engineering purposes. 

Incorporating omics data into genome-
scale metabolic models is an important 
avenue for improved predictive accu-
racy. We revisit and categorize the 
major challenges that still limit the appli-
Genome-scale metabolic models are used in fields ranging from metabolic 
engineering to drug discovery and microbiome design. Although these 
models are often used to predict putatively optimal states, some applica-
tions, including modeling human tissues for drug development and microbial 
communities for synthetic ecology, may require sampling the whole space of 
feasible fluxes to obtain distributions of biologically relevant states. Addition-
ally, many applications involve using transcriptomic or proteomic data to pre-
dict fluxes for specific tissues, diseases, or patients. We revisit different 
methods used toward these goals and focus on their limitations and chal-
lenges, providing guidelines on how to avoid some of the shortcomings of 
existing approaches and highlighting conceptual barriers that will require 
new methodologies and offer opportunities for future development. 
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cability of these approaches, pointing to 
opportunities for future research. 

Predicting distributions of all possible 
fluxes, rather than optimal flux vectors, 
is a valuable and underused approach 
for incorporating uncertainty and captur-
ing phenotypic diversity of metabolic 
states. Multiple tools are available for 
generating these distributions, but spe-
cial care must be taken to obtain mean-
ingful results.
Genome-scale metabolic models 
Understanding cellular metabolism is critical to studying multiple biological processes, in-
cluding disease etiologies and treatments [1,2], microbial community organization and dy-
namics [1,3], and metabolic rewiring caused by environmental and genetic perturbations 
[2].  These phenomena are fundamental to several biotechnological pursuits, including 
drug discovery [4], metabolic engineering of microbes for production of commercially or 
medically valuable compounds [5], and the design or control of synthetic microbial commu-
nities  for  biomedical  or  environmental applications [1,6,7]. Yet, untangling the complex in-
terdependence between the thousands of reactions present in a given organism 
constitutes an ongoing challenge. This is partially due to the fact that direct measurements 
of enzyme expression, metabolite abundances and reaction rates [or fluxes (see Glossary)] 
are generally time-consuming, expensive, and only helpful for quantifying a small portion of 
the enzymes, metabolites, and reactions in any given organism or cell  type [1,8,9]. 
Genome-scale metabolic models (GSMMs), mathematical representations of the net-
works of all  biochemical reactions known to occur in a given cell  type or organism, have 
been used alongside direct measurements of metabolism to help interpret those measure-
ments and to predict all metabolic fluxes in a cell, including those that are difficult to measure 
directly [10]. By using algorithms such as flux balance analysis (FBA) [10], GSMMs have 
been applied in multiple contexts, including predicting the impacts of gene knockouts to 
identify novel drug targets [4,11], guiding metabolic engineering efforts to generate geneti-
cally modified microbes that produce commercially and/or medically valuable compounds 
[5,12], simulating metabolic interactions between different cells within microbial communi-
ties [7,10,13] or multicellular organisms [14], and investigating fundamental questions 
about the evolution of metabolism [15]. 
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Glossary 
Allosteric regulation: modulation of 
enzyme activity induced by the binding 
of a small molecule to the enzyme at a 
location other than its active site. 
Alternative optima: vectors of steady-
state fluxes that are all equivalently 
optimal with respect to a given objective 
function (e.g., maximum growth rate). 
Catalytic activity: the capacity of an 
enzyme to catalyze one or more specific 
chemical reactions. 
Catalytic rate: the maximum rate at 
which an enzyme can transform 
substrate(s) to product(s), often denoted 
as kcat. 
Convergence: for an MCMC 
algorithm, convergence is achieved 
when distributions of possible flux 
solutions from different sampling chains 
are all approximately identical to each 
other. 
Discretize: convert a continuous value 
into a discrete/categorical value. 
Flux: the rate of a reaction, generally 
expressed in millimoles per gram of dry 
weight of biomass per hour. In FBA and 
other stoichiometric modeling 
approaches, fluxes are usually assumed 
to be at steady state. 
Flux balance analysis (FBA): an 
approach for predicting possible steady-
state fluxes for all reactions in a 
metabolic network (from a GSMM) 
based on the stoichiometric coefficients 
of the reactions and an objective 
function (see below), generally under the 
assumption that metabolism operates 
close to an optimum. 
Flux sampling: using an MCMC 
algorithm to generate a representative 
subset of solutions from the set of all 
possible solutions to a GSMM. These 
algorithms provide a distribution of 
possible fluxes through each reaction, 
unlike FBA, which provides a single 
optimal flux for each reaction. 
Flux variability analysis (FVA): a 
variant of FBA in which the minimum and 
maximum steady-state fluxes 
sustainable by each reaction are 
calculated. 
Genome-scale metabolic model 
(GSMM): a formal representation of the 
network of all metabolic reactions that 
occur in a particular organism or cell. The 
core information stored in a GSMM is the 
stoichiometric matrix, whose rows 
correspond to metabolites and columns 
to reactions, and each entry 
corresponds to the stoichiometric
Most applications of GSMMs involve predicting fluxes through all reactions in the GSMM of inter-
est [10]. In particular, in order to make it computationally feasible to predict fluxes through all re-
actions in a cell without needing kinetic parameters, the fluxes predicted from GSMMs are 
generally steady-state fluxes [i.e., fluxes that satisfy mass balance (or flux balance) con-
straints], where the total flux consuming each metabolite is equal to the total flux producing 
that metabolite [10]. In addition to the steady-state constraints, it is also common to con-
strain the reversibility of reactions and the uptake of nutrients to reflect the molecular com-
position of the environment. In general,  multiple vectors of fluxes (where each vector 
encodes one flux for each reaction in the GSMM) satisfy all of these constraints, collectively 
constituting the feasible space of a GSMM [16,17]. Although it is common to refer to a single 
vector of steady-state fluxes as a ‘distribution of fluxes’ through a GSMM, in the present 
work,  we  only  use  the  phrase  ‘distribution of fluxes’ to refer to the set of all  possible 
steady-state fluxes that a reaction within a GSMM can sustain. Another common practice, 
especially in the context of metabolic engineering, is to try to identify a single vector of 
steady-state fluxes that is ‘optimal’ [i.e., it leads to the maximization (or minimization) of a 
given linear combination of fluxes (objective function)], usually the cellular steady-state
growth rate [5,10,18]. Notably, in most GSMMs, even the search for steady-state fluxes as-
sociated with maximal growth rate typically yields multiple equivalently optimal solutions (al-
ternative optima) [16,18]. Many different reactions (and linear combinations of reactions) 
have been used as objective functions, but few manage to single out a unique optimal set 
of fluxes [16]. GSMMs typically include also a collection of fictitious reactions that act as 
sources of specific individual metabolites, representing availability and uptake of nutrients 
from the extracellular environment [6]. Most cells are in principle capable of consuming a va-
riety of nutrients that may not be present in a given environment. It is therefore critical to en-
sure that the constraints on fluxes through nutrient uptake reactions are accurately 
reflecting the availability of environmental molecules before attempting to predict fluxes 
through the rest of the GSMM. 

Although GSMMs have been used successfully in multiple contexts, several challenges limit their 
applicability and accuracy beyond relatively simple and well-studied scenarios. Here, we review 
some of the most significant challenges and existing efforts to address them. Note that reaching 
high accuracy in the inference of a particular GSMM from the corresponding genome constitutes 
a significant challenge of its own, which has been thoroughly discussed elsewhere [10] and is 
not discussed here. The first challenge we address is appropriately integrating transcriptomic, pro-
teomic, or other omic data into a GSMM in order to accurately predict metabolic fluxes in specific 
cell types and conditions [10,19]. It has been shown that in several instances, fluxes predicted 
using omic integration methods display accuracies comparable with predictions made without in-
corporating context-specific omic data at all, for reasons that remain unclear [20,21]. The second 
challenge is obtaining biologically meaningful results from algorithms designed to predict the distri-
butions of all possible fluxes through each reaction in a GSMM. As mentioned above, most reac-
tions in most GSMMs are capable of sustaining a whole distribution of steady-state fluxes, even 
after imposing objective functions. Predicting these distributions can provide insight into the preci-
sion/uncertainty of the predicted fluxes through each reaction and may even be a more realistic re-
flection of the metabolic adaptability and phenotypic diversity of real cells [16]. Algorithms capable 
of predicting these distributions can be difficult to use and easy to misuse and may produce out-
puts that are hard to interpret [16]. This review discusses the details of these challenges with 
using GSMMs, provides a critical assessment of the performance of existing approaches, and dis-
cusses how various choices made when applying GSMMs to different biotechnological applica-
tions (Box 1) affect the quality and utility of their predictions, potentially informing future 
improvement efforts. 
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Markov chain Monte Carlo (MCMC): 
a class of algorithms for approximating 
the distribution of all possible solutions to 
a system of equations. Each solution is 
ideally computed independently of the 
previously computed solution. 
Objective function: a  linear  
combination of reaction fluxes in a 
GSMM, which is assumed to be 
maximized (or minimized) by the cell. A 
common objective function used in FBA 
is the maximization of the biomass 
production flux .
Sampling chain: a  collection  of  
solutions derived from a single execution 
of an MCMC algorithm applied to a 
specific system of equations .
Thermodynamically infeasible 
cycle: a loop of reactions where each 
reaction has a nonzero steady-state flux, 
but there is zero overall net production or 
consumption of metabolites. Because 
nonzero flux through each reaction is 
thermodynamically possible only if that 
reaction has a negative free energy 
change, such a loop must have a 
nonzero net free energy change, which 
is thermodynamically possible only if 

coefficient of that row’s  metabolite  in  
that column’s react ion.
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Creating context-specific GSMMs 
GSMMs for multicellular organisms generally represent the metabolism of generic cells of the tar-
get organism rather than the metabolism of any particular cell type, organ, or tissue [22]. Similarly, 
some GSMMs for microbial organisms represent the combined metabolic capacities of all strains 
of that organism rather than just a single strain (e.g., Saccharomyces cerevisiae [23]). Several 
methods have been developed to use omic data to ‘extract’ GSMMs of specific strains or cell 
types, termed ‘context-specific’ GSMMs (Figure 1A) [10]. Context-specific  models  serve  two
major purposes. First, they constitute repositories of knowledge that integrate genomic informa-
tion (all possible reactions encoded in that genome) with developmental stage or environmental 
knowledge (i.e., the context), which is typically derived from a readout of gene expression infor-
mation. This knowledge can be used to qualitatively assess the metabolic capabilities of a 
given cell type in a way that otherwise would be very challenging. Second, by using these 
context-specific models as the starting point for FBA predictions, one can generate quantitative 
predictions of all cellular fluxes in specific tissues, cells, or conditions. This approach can be es-
pecially relevant when attempting to identify novel drug targets using GSMMs of diseased cells or 
pathogens or simulating metabolic interactions between different cell types within a community, 
tissue, biofilm, or tumor [6,10,14]. Most methods for creating context-specific GSMMs primarily 
use transcriptomic or proteomic data from the strain or cell type of interest to limit the maximum 
flux allowed through reactions catalyzed by lowly expressed enzymes (Figure 2). It has been 
shown through specific examples that many of these methods may produce context-specific 
GSMMs whose predicted fluxes do not match experimental data better than predictions obtained 
from generic GSMMs; yet, no specific feature or combination of features of any method has been 
conclusively determined to be responsible for the limited accuracy of context-specific model pre-
dictions [20,21]. In this section, we review the assumptions underlying many of these methods,
Metabolic engineering 

GSMMs can serve useful roles at several stages of different kinds of metabolic engineering projects [5]. They can be used 
to facilitate efforts to create novel microbial strains that efficiently produce specific compounds of interest by simulating the 
impacts of various knockouts on the production of the target compound (Figure IA) quickly and inexpensively before gen-
erating real-life strains with those knockouts [5]. Multiple tools also leverage GSMMs to predict a minimal set of exogenous 
enzymes to add to a given organism to enable production of a given compound [5]. GSMMs of strains that have already 
been engineered can help identify further manipulations (i.e., additional exogenous enzymes or knockouts) that would in-
crease production of the target compound and help explain counterintuitive phenotypes of such strains (e.g., knockouts 
that were expected to improve production of the target compound that had no measurable effect) [137]. GSMMs can also 
be used to identify essential nutrients for particular organisms, which can inform the design of chemically defined minimal 
media, as well as media that are optimized to sustain production of specific compounds while maintaining a given growth 
rate [138]. 

Drug targeting 

GSMMs of pathogenic cells (e.g., cells in tumors or parasitic organisms) can be used to identify potential drug targets by 
predicting which knockouts are likely to significantly disrupt the metabolism of those cells, especially their ability to sustain 
growth (Figure IB) [4]. These disruptions can, in principle, include both reducing the production of essential metabolites 
and increasing the production of toxic metabolites. In combination with GSMMs of healthy cells, one can also predict 
the selectivity of (potential) drugs that target metabolic enzymes by simulating their impact on the metabolism of healthy 
cells [4]. 

Community engineering 

GSMMs of multiple different cell types can be combined into models of metabolic interactions within communities of dif-
ferent cell types, including microbial communities [7,13], interactions between host cells and microbiomes [13], tumor mi-
croenvironments [85], and different tissues of multicellular organisms [14]  (Figure IC). Such models can be used to predict 
the consequences of perturbations to these communities, such as the impact that adding a particular drug or metabolite 
will have on the relative abundance of each cell type or the impact of adding or removing certain members of synthetic 
communities on the metabolic phenotypes of the other members [7].

there is a net production or consumption 
of metabolites. 

Box 1. Biotechnological applications of GSMMs 
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Figure I. Biotechnological 
applications of genome-scale 
metabolic models. Illustrations of 
how genome-scale metabolic models 
can be applied to (A) metabolic 
engineering projects focused on 
ncreasing production of particular 
metabolites of interest, (B) identifying 
potential metabolic drug targets, and 
(C) engineering metabolic interactions 
within communities of cells. See box 
text for more details. Abbreviation: KO, 
knockout.
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Figure 1. Factors relevant to creating context-specific genome-scale metabolic models (GSMMs). (A) Schematic 
representations of two different GSMMs representing two cells capable of catalyzing the same set of reactions, but with different 
fluxes through each reaction because of differences in the abundances of the corresponding enzymes in each cell. Circles 
represent metabolites, arrows represent metabolic reactions, hexagons over arrows represent metabolic enzymes, the size 
of each arrow represents the flux through the reaction, and the size of each hexagon represents the abundance of the 
enzyme. Note that some reactions with low fluxes are associated with highly abundant enzymes because flux through an 
upstream reaction was limited by a lowly abundant enzyme. (B) The effective abundance of enzymes available to catalyze a 
particular reaction can differ from the total abundance of that enzyme in the cell and the abundance of the mRNA encoding 
that enzyme. Alternative splicing can lead to different mRNA isoforms that are exported from nuclei with different efficiencies 
and translated into different numbers of proteins per mRNA. Alternative splicing can also affect the subcellular localization of 
the corresponding protein, as well as which post-translational modifications it receives, both of which may also depend on 
the regulatory state of the cell as a whole and can alter the catalytic activities and rates of each protein isoform. Each 
individual protein may only be catalytically active as part of an enzyme complex comprised of multiple copies of that protein 
and/or proteins derived from different genes. Some enzymes may be catalytically active both as monomers and as subunits 
of enzyme complexes but may have different catalytic activities or rates as monomers than they do as subunits. 
(C) Examples of one-to-many and many-to-one mappings between enzymes and reactions. One reaction may be capable of 
being independently catalyzed by multiple different enzymes (isozymes), one enzyme may be capable of catalyzing multiple 
different reactions (promiscuous enzymes), and some reactions are catalyzed by complexes of multiple separate protein 
subunits encoded by different genes.
assess their biological plausibility, and identify the most biologically plausible approach and inher-
ent limitations for each step in the process of creating a context-specific GSMM. 

Measuring or estimating enzyme abundance 
Because enzyme abundance varies significantly between cell types or strains and can constrain 
metabolic fluxes, most methods for creating context-specific GSMMs focus on incorporating
Trends in Biotechnology, Month 2025, Vol. xx, No. xx 5
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Figure 2. Characteristics of methods for creating context-specific genome-scale metabolic models (GSMMs)
Methods are arranged chronologically by the date of publication of the first paper about the method (i.e., the first reference in
the ‘References’ column), with the oldest method in the uppermost row. Methods with multiple shapes in the ‘Required inpu
data’ column require all of the indicated types of input data. Methods with a ‘1’ in the ‘Conditions’ column can create context-
specific GSMMs with a single set of the required input data, whereas methods with a ‘2’ or ‘>2’ require multiple sets of each
type of required input data, each gathered in a different condition. A ‘✓’ in the ‘Discretizes?’ or ‘Uptake constraints?’ column
indicates that the corresponding method discretizes the input data or constrains nutrient uptake fluxes, respectively. An ‘x’ in
the ‘Discretizes?’ or ‘Uptake constraints?’ column indicates that the corresponding method does not discretize the input data
or constrain nutrient uptake fluxes, respectively. The ‘Isozyme’ and ‘Enzyme complex’ columns indicate how methods assign
expression levels to reactions catalyzed by multiple isozymes or enzyme complexes composed of multiple subunits: using the
maximum, minimum, sum, or mean expression level of all isozymes or complex subunits or by creating copies of reactions

(Figure legend continued at the bottom of the next page.
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enzyme abundance data. However, proteomic approaches for quantifying enzyme abundance 
are expensive, time-consuming, and often produce accurate measurements for only a fraction 
of the enzymes present [9]. In contrast, transcriptomic techniques are cheaper, faster, and capa-
ble of precisely measuring the abundance of nearly all mRNAs. Consequently, transcriptomic 
data are generally much more available than proteomic data, and most methods for creating 
context-specific GSMMs use mRNA abundance as a proxy for enzyme abundance (Figure 2). 

Although there is some correlation between transcript and protein abundance [24], several impor-
tant biological phenomena contribute to discrepancies in the two values (Figure 1B) [20,25]. 
Some transcripts are translated into proteins thousands of times more efficiently than others 
[25,26], and alternative splicing of the same pre-mRNA can affect the likelihood of nuclear reten-
tion/export of the mature mRNA [27], as well as the enzymatic activity and/or subcellular localiza-
tion of enzymes translated from it [28–30] and the likelihood of post-translational modifications 
(such as acetylation and glycosylation) that can affect enzymatic activity [31–33]. When using 
GSMMs to predict how fluxes change over time (as opposed to predicting steady-state fluxes) 
[7,34], it is also important to consider that the aforementioned processes may take meaningfully 
different amounts of time for different genes. Various tools have been developed to quantify the 
relative abundances of alternative mRNA isoforms [35]; predict nuclear export [27] and translation 
efficiencies of arbitrary mRNAs [26]; and predict the enzymatic activity [36], subcellular localization 
[37], and probable post-translational modifications [38] of the corresponding proteins. In princi-
ple, such tools could be leveraged to mitigate the problems with using transcript abundances 
as proxies for enzyme abundances; yet, few methods for creating context-specific GSMMs em-
ploy such tools [39]. 

Several methods for tailoring generic GSMMs to specific contexts involve discretizing enzyme or 
transcript abundances to designate certain reactions as ‘inactive,’  ‘lowly expressed,’ or ‘highly 
expressed’ (Figure 2). This has occasionally been explained as a strategy for mitigating noise 
[20] or various other limitations of microarray data [40,41], but it is unclear why more recent 
methods developed to use RNA-sequencing data involve discretization (Figure 2)  [42–45]. 
Many methods that do not discretize expression data transform or normalize expression levels 
(e.g., by using logarithms of transcript abundances [46,47] or by normalizing all expression levels 
to the highest expression level [47,48]). Although these transformations may reflect standard 
practice in expression data analysis, it is not clear that they represent biologically grounded 
ways of encoding the effect of mRNA abundance on fluxes. 

In summary, predicted fluxes from context-specific GSMMs are generally more likely to be biolog-
ically plausible when made with continuous and not discretized expression levels; proteomic 
rather than transcriptomic data whenever possible; and/or tools such as GeTPRA [39], rMATS-
catalyzed by isozymes and associating each isozyme’s expression level with a different copy. A value of ‘Ignores’ in the
‘Isozymes’ or ‘Enzyme complex’ column signifies that the paper(s) that introduced the corresponding method did no
mention if or how the method handled expression levels of isozymes or enzyme complex subunits, whereas a value o
‘Unclear’ signifies that the paper(s) mentioned that the method accounts for isozymes or enzyme complexes but limited o
no explanation is provided. Methods with multiple shapes in the ‘Expression data used to’ column use expression data in
all of the indicated ways. Objective function abbreviations: ‘A’ = maximize agreement (which includes but is not limited to
correlation) between predicted fluxes and expression data; ‘B’ = maximize or minimize the weighted sum of all predicted
fluxes; ‘C’ = minimize extent to which predicted fluxes violate their bounds; ‘D’ = minimize the L1-norm of all predicted
fluxes; ‘E’ = minimize the total change in all predicted fluxes between conditions; ‘F’ = minimize the L2-norm of al
predicted fluxes; ‘G’ = maximize the predicted flux through the biomass reaction; ‘H’ = minimize the change in predicted
flux through the biomass reaction between conditions; ‘I’ = maximize the total predicted production of ATP; ‘J’ =

(See figure legend at the bottom of the next page.
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turbo [35], MEW [26], and BUSCA [37], etc. [36,38], to account for alternative splicing, variable 
translation efficiency, etc. if transcriptomic data are used in place of proteomic data. As discussed 
below, an accurate estimate of enzyme abundance is only one of the pieces of information nec-
essary to make biologically plausible predictions about the magnitude of metabolic fluxes.

Mapping enzyme abundance to reactions 
Another major obstacle to incorporating expression data into GSMMs is determining how to map 
enzyme expression levels to reactions, because many metabolic reactions can be independently 
catalyzed by multiple enzymes (isozymes), some can be catalyzed only by complexes of multiple 
protein subunits encoded by different genes, and some enzymes can catalyze multiple different 
reactions (multifunctional enzymes) (Figure 1C) [49–52]. Existing methods for creating context-
specific GSMMs have taken different approaches to mapping expression levels to reactions 
(Figure 2). Most methods associate a single expression level with each reaction 
[34,40–48,53–86], which requires integrating multiple expression levels into a single value for all 
reactions with isozymes or those catalyzed by enzyme complexes. 

The most common approach to integrating the expression levels of isozymes is to use only 
the expression level of the most expressed isozyme for each reaction (Figure 2) 
[34,41,44,48,55–57,62,64,71,73,76,77]. A less popular alternative approach is to make cop-
ies of all reactions associated with isozymes, one copy per isozyme, and associate each copy 
with the expression level of a different isozyme [75,87–89]. Although the biological plausibility of 
both approaches is comparable, different enzymes catalyze their reactions at different rates, so 
many copies of a slow enzyme can have the same effective catalytic capacity as few copies of a 
fast enzyme. Because the catalytic rates of different enzymes can vary by several orders of 
magnitude [25], the biological plausibility of the expression levels assigned to each reaction, es-
pecially reactions catalyzed by isozymes, depends strongly on whether the expression levels 
are weighted by catalytic rates. 

The most common approach to deriving an expression level for an enzyme complex is 
to use the minimum expression level of all  core subunits (Figure 2) 
[34,41,43–45,48,53,55–57,60,62,64,66,69,71,73–76,78,79,83–89]. This may accurately 
represent enzyme complexes that require all of their core subunits to have catalytic ac-
tivity [90], but it  misrepresents heteromeric complexes with different numbers of each 
subunit present within each complex [91,92]. For example, the human pyruvate dehydro-
genase complex generally has three E2 subunits for each E3 subunit [93], so the number 
of complete complexes could be limited by the expression level of the E2 subunit even if 
the expression level of the E3 subunit was lower. GSMMs generally indicate which reac-
tions are catalyzed by enzyme complexes using gene-protein-reaction (GPR) rules, 
which are strings of gene names (or symbols or other identifiers) separated by ‘and’ 
when they are subunits of the same complex or ‘or’ when they are isozymes [91]. One ap-
proach to incorporating the stoichiometry of enzyme complex subunits is to extend GPRs 
to also include copy numbers, such as ‘A*1 and B*2’ (representing a complex of one copy 
of subunit A and two copies of subunit B), so that one can divide the expression level of 
each enzyme associated with a particular reaction by its copy number before determining 
the minimum expression level to assign to the reaction [94]. Another approach is to add 
each enzyme to the reaction(s) it catalyzes as a ‘reactant’ and use its subunit copy number 
as its stoichiometric coefficient in the reaction, then add a reaction that creates each en-
zyme ‘metabolite’ whose maximum flux is set with that enzyme’s expression level (usually 
divided by its catalytic rate)  [87,91,95]. Neither approach is necessarily more or less bi-
ologically plausible than the other, but the second approach also addresses potential
8 Trends in Biotechnology, Month 2025, Vol. xx, No. xx
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issues with the representation of isozymes as described in the previous paragraph, 
whereas the first approach addresses only enzyme complexes. 

Most methods for creating context-specific GSMMs constrain all reaction fluxes associated with 
each multifunctional enzyme separately, ignoring the fact that they share a limited pool of that en-
zyme (Figure 2). This approach is at odds with the general principle behind using enzyme abun-
dance to influence the predicted fluxes through reactions in GSMMs: the amount of enzyme 
available to catalyze each reaction can limit how much flux it can sustain. The few methods that 
account for multifunctional enzymes do so by adding each enzyme to the reactions it catalyzes 
as a ‘reactant’ and limiting the availability of each enzyme ‘reactant’ with its expression level 
[87–89,91]. Although this enables a more accurate representation of multifunctional enzymes, 
these methods create copies of all reactions with isozymes in order to add a different enzyme ‘re-
actant’ to each copy, and the total number of reactions in a GSMM significantly influences the 
computational resources required to perform downstream analyses. 

Altogether, a biologically plausible way to address the many-to-many mapping between enzymes 
and reactions is to account for the existence of isozymes and multifunctional enzymes by creating 
copies of reactions associated with isozymes, as done in GC-Flux [75], GECKO [87], and 
sMOMENT [89]; constrain all groups of reactions that can be catalyzed by the same enzyme to-
gether, as done in GECKO [87], sMOMENT [89], and TRFBA [88]; and use databases such as the 
Complex Portal [92] to account for enzyme complex subunit stoichiometry [87,94]. 

The relationship between enzyme abundance and reaction fluxes 
Although the abundance of the enzyme(s) that can catalyze a particular reaction is one of the factors 
limiting its maximum possible flux, it is not the only relevant factor. The relative concentrations and 
chemical potentials of the products and reactants also significantly influence reaction fluxes – the abun-
dance  of  an  enzyme  has  no  influence on the flux through a reaction if its substrates are not present
[96]. Furthermore, the extent to which changes in enzyme abundance influence reaction fluxes de-
pends on each enzyme’s catalytic rate, which can vary by seven orders of magnitude [25]. However, 
few methods for incorporating expression data into GSMMs also incorporate catalytic rates (e.g., by 
weighting the abundances of enzymes with their catalytic rates) [54,65,66,78,87], metabolite concen-
trations [47,65], or any thermodynamic parameters [42,43]. Many methods that ignore metabolite con-
centrations and catalytic rates also force predicted fluxes to correlate to enzyme abundances as much 
as possible, an assumption that oversimplifies the implications of Michaelis-Menten kinetics (Figure 2) 
[34,40–42,44–47,55–64,68,70,72–74,76,77,80–82,97]. 

Many methods assume that a reaction cannot carry flux if none of the associated enzymes appear 
to be expressed in the given expression dataset [40–42,46,53,55–57,62,64,68,80,81,83,85,87]. 
This neglects the possibility of false negatives, which is especially concerning in light of the fact 
that many housekeeping genes – genes that are constitutively expressed at similar levels in most 
or all contexts – are known to be expressed at relatively low levels [98]. In addition, recent papers 
have shown that particular enzymes are capable of catalyzing many more reactions than they were 
initially known to [51,99]. Thus, permanently blocking the flux through a reaction in a GSMM be-
cause none of the enzymes it is currently associated with are expressed may artificially rule out 
the possible role of yet to be uncovered secondary catalytic activities of other enzymes. Further-
more, some reactions can occur at non-negligible rates in the absence of any enzymes, such as 
the (de)hydration of carbonic acid [100], so completely blocking flux through such reactions just be-
cause the enzymes that can catalyze them are absent is risky. Blocking fluxes through reactions 
associated with enzymes that do not appear to be expressed has been suggested to be a contrib-
uting factor to the low accuracy of predicted fluxes made by context-specific GSMMs produced
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with existing methods [20]. One suggested way to avoid these issues is to allow all reactions in a 
GSMM to sustain some relatively small amount of flux, regardless of enzyme abundances 
[83,86]. Note that the magnitudes of fluxes predicted through reactions in GSMMs can vary by sev-
eral orders of magnitude, so this minimal flux should be treated as a parameter of the model whose 
value should be carefully optimized. 

A reason why most methods do not incorporate catalytic rates is that relatively few enzymes in 
any single organism have had their catalytic rates measured. Although experimentally measuring 
catalytic rates has proved difficult to scale, several recent machine learning methods have been 
developed that can accurately predict the catalytic rates of most enzymes [101,102]. Some of 
these methods [101] can also predict secondary catalytic activities, so incorporating them into fu-
ture methods for constraining GSMMs with omic data may help address multiple obstacles to 
predicting accurate fluxes. 

Allosteric regulation of enzymes by metabolites is known to have significant influence on met-
abolic fluxes. For multiple reasons, however, allosteric effects are difficult to represent in GSMMs 
and to incorporate into algorithms for flux predictions [96,103]. First, the basic information about 
which metabolites regulate which enzymes is available for only relatively few highly studied organ-
isms [65], and the experiments necessary to measure such interactions in other organisms re-
quire significant investments of time and resources [103]. Even with the knowledge of which 
allosteric interactions occur in the cell(s) of interest, modeling the impact they have on metabolic 
fluxes requires experimentally measured enzyme concentrations and either metabolite concen-
trations or thermodynamic parameters for all reactions [65]. Furthermore, accurately representing 
the relationship between the concentrations of allosteric regulators and the fluxes through reac-
tions catalyzed by the enzymes they regulate involves kinetic parameters that have not been mea-
sured and are difficult to measure for most interactions in most organisms. This relationship is also 
challenging because predicting steady-state fluxes provides no information about steady-state 
metabolite concentrations. In addition to the challenges with obtaining the required input data, 
accounting for the frequently nonlinear relationships between the concentrations of allosteric reg-
ulators and the activities of the enzyme(s) they regulate significantly increases the computational 
complexity of flux prediction algorithms [65]. 

An additional important aspect of creating context-specific GSMMs is the choice of constraints 
on fluxes through nutrient uptake reactions. Relatively small changes in the composition of cell 
culture media have been observed to lead to significant changes in metabolic phenotypes of cul-
tured cells [96]. Therefore, it is important to use as much information as possible about nutrient 
availability and uptake to constrain allowable fluxes through these nutrient uptake reactions, es-
pecially when simultaneously using expression data to constrain predicted fluxes [21,80,85]. 
Even though the precise chemical composition of culture media or other cellular environments 
(e.g., tumor microenvironments) is often unknown, GSMMs may contain uptake reactions for a 
variety of drugs or other xenobiotics that can safely be assumed to be absent in most contexts, 
so it is often possible to determine that at least some uptake reactions should be assumed to 
have zero flux. Relatively few existing methods for incorporating expression data into GSMMs 
also constrain uptake fluxes [34,47,54,66,83,84], which is potentially attributable to the fact 
that transporters are more likely to be misannotated than enzymes [104]. Ideally, one would 
either set all nutrient uptake fluxes to experimentally measured values [21]  or  set  the  bounds  
on predicted values using both measured concentrations of environmental metabolites and ki-
netic parameters of all relevant transporters [7], but even just preventing uptake of metabolites 
known to be unavailable in the condition of interest has been shown to improve prediction 
accuracy [80,85].
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Predicting distributions of possible fluxes 
As mentioned above, most reactions in most GSMMs under a given environmental condition are 
capable of sustaining a distribution of steady-state fluxes (rather than a single possible flux). From 
a mathematical perspective, this is a consequence of the fact that a typical FBA problem is 
underdetermined [i.e., the constraints imposed on the network (in the form of flux balance or 
upper or lower bound to specific fluxes) define a convex polyhedron of possible flux states (the 
feasible space), which are all, in principle, possible]. From a biological perspective, the goal of 
predicting a single set of fluxes to be compared with experimental data has historically repre-
sented the standard go-to approach to narrowing down possible states within the feasible 
space. However, researchers have increasingly started recognizing the possible biological rele-
vance of the full set of possible fluxes compatible with available constraints and, in parallel, ad-
dressing the challenging mathematical question of how to obtain an accurate representation of 
this space. Although, through linear optimization, standard FBA typically reports a single vector 
of possible fluxes through all reactions in a GSMM at a time, we focus here on alternative algo-
rithms, which either systematically explore the possible range of individual fluxes or use random 
sampling of points within this space (flux sampling) in order to characterize the shapes of 
these distributions of all possible fluxes (Figure 3A). It is important to note that, although objective 
functions are often presented as a necessary prerequisite to predicting fluxes through reactions in 
a GSMM [4,10,16], the alternatives shown in Figure 3 do not require users to specify an objective 
function. This makes these alternatives particularly useful in the numerous contexts in which the 
modeled cells lack a clearly defined metabolic objective, such as most cells in multicellular organ-
isms [4] or bacteria growing in nutrient-poor or fluctuating environments [18]. In many cases, it is 
also possible to use such algorithms to characterize the space of alternative optima for a partic-
ular objective function [16,17]. These distributions of possible fluxes can also be used to quantify 
the uncertainty of the predicted flux through each reaction [16].

Flux variability analysis (FVA) [105] can be used to compute the minimum and maximum pos-
sible flux that each reaction can sustain (Figure 3A). However, each reaction’s maximum and min-
imum flux is computed independently, neglecting flux–flux correlations. For example, it may not 
be possible for two reactions to simultaneously sustain the maximum fluxes that FVA predicts 
for each of them. Other algorithms that predict the entire distribution of possible fluxes (as op-
posed to just the ranges) through each reaction (Figure 3A) can offer more nuanced insights 
into the relationships between the fluxes through different reactions and the impacts of genetic 
or environmental perturbations [16,17]. Algorithms for computing these distributions generally in-
volve much more sophisticated mathematics and computational resources than FVA (Table S1 in 
the supplemental information online) [16,106–108], especially when applied to large GSMMs, 
such as those of human cells or communities of multiple cell types [14,22]. In the context of met-
abolic engineering, such algorithms can also enable more accurate predictions of the range of 
phenotypes exhibited by cultures of engineered microbes than just predicting the theoretical 
maximum fluxes through individual reactions. Furthermore, these distributions of possible fluxes 
may accurately represent the metabolic versatility and adaptability of individual cells or the pheno-
typic heterogeneity of populations of cells, as opposed to merely representing noise or errors in 
the modeling approach [109]. Many methods for creating context-specific GSMMs are also com-
patible with algorithms for predicting distributions of possible fluxes and can help ensure that 
those distributions are biologically plausible. 

Convergence diagnostics 
Most algorithms for predicting distributions of possible fluxes through reactions in GSMMs are 
Markov chain Monte Carlo (MCMC) algorithms, which combine all reactions’ distributions 
into a single multivariate distribution and iteratively generate samples from that distribution,
Trends in Biotechnology, Month 2025, Vol. xx, No. xx 11
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Figure 3. Determining distributions of all possible fluxes through genome-scale metabolic models (GSMMs)
(A) Schematic illustrating how different algorithms for predicting fluxes from GSMMs work, specifically flux balance analysis
(FBA), flux variability analysis (FVA), and sampling algorithms. Each point in the plot in the upper right represents a set o
fluxes through the toy metabolic network in the lower left, where the x-axis represents the flux through reaction v1 and the
y-axis represents the flux through reaction v2. The shaded area indicates the space of possible steady-state fluxes through
the network, subject to a constraint on the maximum possible flux through one of the unlabeled reactions to the left or right o
v1 and v2 in the toy metabolic network. FBA can predict the maximum or minimum possible flux through a linear combination
of reactions, including the maximum or minimum possible flux through a single reaction (points at corners of the solution
space labeled ‘FBA’). By computing the maximum and minimum possible fluxes through all reactions, FVA predicts the
ranges of possible fluxes through each reaction (pink and green lengths labeled ‘FVA’ along axes of upper right plot). By com-
puting many points within the solution space, sampling algorithms can predict the full distributions (as opposed to just the
ranges) of possible fluxes through each reaction (pink and green polygons in shaded boxes labeled ‘Sampling’ below and
to the left of the upper right plot). Although the full solution space (upper right plot) of this toy model with only two reactions is
easy to visualize, creating histograms of the sampled fluxes through each reaction (plots in shaded boxes labeled ‘Sampling’
is a useful way to approximately visualize the shapes of the many-dimensional solution spaces of GSMMs of real organisms
(B) Schematic illustrating how sampling algorithms predict distributions of all possible fluxes through reactions in a GSMM by
computing a representative sample of all possible configurations of flux through the GSMM. The plot is analogous to the one
in (A), representing the space of all possible configurations of fluxes through a GSMM (the feasible space), where the shaded
areas represent configurations of fluxes that are not allowed by constraints on the fluxes through the reactions in the GSMM
The output of a sampling algorithm can be visualized as a ‘chain’ of connected points in the feasible space. A way to test if a
particular sampling chain constitutes a representative subset of all possible configurations of fluxes through a GSMM is to
run the same sampling algorithm on the same GSMM multiple times and use statistics such as the potential scale reduction fac-
tor (PSRF) to quantify the extent to which the different chains have converged to the same distribution of possible fluxes for an
individual reaction. A rank-normalized PSRF greater than 1.01 may indicate that the chains have not converged [120]. The two
sampling chains appear to have converged to the same marginal distribution of fluxes through reaction X but have not con-
verged for reaction Y. (C) Distributions of possible fluxes through the D-lactate dehydrogenase reaction (LDH_D) in iML1515
[139] from four sampling chains generated by the Cobrapy [122]  implementation  of  OptGP  [111] with the default thinning facto
of 100 and a thinned sample size of 40 000. The marginal distributions from the first 400 (thinned) samples from each chain are
shown in the left column, and the right column shows the distributions from all 40 000 (thinned) samples. The rank-normalized
effective sample size (ESS) and PSRF were computed separately for only the first 400 and all 40 000 samples produced by a
four chains using the posterior R package [120]. The authors of the posterior R package, who also defined the rank-normalized
ESS and PSRF statistics, recommend sampling until reaching an ESS of at least 400 and a PSRF of less than 1.01 [120].
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where each sample is a vector containing a flux value for each reaction in the GSMM (Table S1 in the 
supplemental information online) [106,110–114] (although a few alternative algorithmic approaches 
have been used [108,115,116]). Specifically, most of these algorithms are hit-and-run algorithms 
that compute one sample, compute a direction and distance to travel to arrive at a different point in 
the multivariate distribution, and repeat (Figure 3B; Table S1 in the supplemental information online) 
[117]. Different algorithms take different approaches to determining where the next sample should 
be relative to the current one [106,112], transforming the multivariate distribution so that fewer itera-
tions are required to generate a representative subset of samples [112,118], or biasing certain points 
as more or less likely to be sampled [114,119]. A key consideration when using MCMC algorithms 
is determining how many samples are ‘enough’ in order to constitute a representative subset of all 
possible samples. A common way to assess this is to run a particular algorithm on the same input 
multiple times to construct multiple separate ‘sampling chains,’ then compare the distributions 
from the different chains and assess how similar they are (Figure 3C). A number of statistical ap-
proaches have been devised to measure the extent to which the different sampling chains have 
converged to the same distribution (which is assumed to be the underlying distribution the sam-
ples are being generated from), such as the potential scale reduction factor [120]. It is not generally 
possible to precisely predict how many samples will be necessary before a particular MCMC algo-
rithm converges on a particular input, so directly assessing the extent to which the output of an 
MCMC algorithm has converged is critical [16,120]. 

Although implementations of newer algorithms such as CRHMC [106] and LooplessFluxSampler 
[113] automatically compute one or more convergence diagnostics, implementations of many 
earlier algorithms do not [110–112], leaving it up to each individual user to perform such tests. 
In particular, the implementations of ACHR [110], OptGP [111], and CHRR [112] available in 
the COBRA MATLAB toolbox [121] and/or the Cobrapy Python package [122], the two most 
widely used software packages for manipulating GSMMs, do not automatically report any mea-
sures of convergence along with their output. Many published papers that used MCMC algo-
rithms on the solution spaces of GSMMs do not report any measures of convergence 
(Table 1), so it is unclear if their predicted distributions of fluxes are sufficiently representative of 
the GSMMs’ solution spaces to provide conclusive biological interpretations (Figure 3C) [16].

Note that tests of convergence are generally performed separately on each marginal distribution 
(i.e., each individual reaction’s distribution of sampled fluxes), and the distributions for some reac-
tions may take many more iterations to converge than others. If the distribution for a particular re-
action has converged but others have not, the converged distribution should maintain the same 
shape, mean, and so forth as additional samples are computed, so it is not strictly necessary for 
all reactions’ distributions to converge before one can obtain meaningful results. However, com-
puting additional samples after distributions appear to have converged is generally recom-
mended to ensure that the distributions remain stable, because tests for convergence are 
technically tests for the presence of certain warning signs of nonconvergence, and passing one 
or all does not guarantee convergence [16,120]. 

Thermodynamically infeasible cycles 
A major obstacle to obtaining biologically meaningful predicted fluxes in both regular FBA and 
sampling is the potential presence of cycles of reactions that can sustain thermodynamically in-
feasible fluxes (Figure S1 in the supplemental information online) [113,123]. Many techniques 
have been developed to avoid predicting meaningless fluxes through these thermodynamically 
infeasible cycles [113,123], including some of the aforementioned methods for incorporating 
context-specific omic data into GSMMs that incorporate chemical potentials of metabolites or 
standard Gibbs free energy changes of reactions [42,43,78].
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Table 1. Papers that have used sampling algorithms to predict fluxes from GSMMsa 

Application Algorithm Convergence assessment Refs 

Enzymopathies of glycolytic enzymes in human 
red blood cells 

Rejection Qualitatively judged stability 
of marginal distributions 

[17,124] 

Organization of fluxes throughout entire 
Escherichia coli metabolic network 

HR None [125] 

Human mitochondrial diseases ACHR Unclear [110,126] 

Central carbon metabolism in E. coli HR Qualitatively judged stability 
of marginal distributions 

[125,127] 

Metabolic impacts of knockouts in 
Saccharomyces cerevisiae 

ACHR None [110,128] 

Changing carbon sources and/or knocking out 
genes in S. cerevisiae 

CB Compared with 
experimentally measured 
fluxes 

[129] 

Gene knockouts in E. coli OptGP None [65,111] 

Adipocyte metabolism in lean and obese patients CB None [129,130] 

Metabolic division of labor between different 
Arabidopsis thaliana tissues 

ACHR None [110,131] 

Enzyme usage in wild-type and 
succinate-producing E. coli 

ACHR None [91,110] 

Endothelial cell metabolism in patients with sepsis 
who survived or died 

OptGP None [132] 

Redox metabolism in head and neck squamous 
cell carcinomas in smokers 

OptGP None [78,111] 

Central carbon metabolism before and after 
chilling A. thaliana 

ACHR, 
OptGP, and 
CHRR 

Raftery & Lewis, Geweke, 
and IPSRFb diagnostics 

[16,110–112] 

Phosphate depletion in Streptomyces coelicolor CB None [129,133] 

Metabolism of volatile organic compounds in 
strains of S. cerevisiae used for wine-making 

OptGP None [111,134] 

Metabolic heterogeneity of breast cancer OptGP None [84,111] 

Metabolism during metastasis of ovarian cancer OptGP None [111,135] 

Metabolic interactions between plant-associated 
Pseudomonas strains 

OptGP None [111,136] 

Metabolic interactions in human gut microbiome CRHMC None [13,106] 

a Papers are arranged in chronological order by date of publication. 
b IPSRF, interval-based scale reduction factor.

Outstanding questions 
Predicting how transcript abundances 
relate to enzyme abundances and 
how enzyme abundances relate to 
fluxes at the genome scale is still 
challenging. Can these predictions be 
improved, such as by integrating 
additional data and combining 
mechanistic modeling with data-driven 
approaches? 

Is it possible to robustly incorporate 
small-molecule regulatory effects on 
metabolic enzymes, such as allosteric 
regulation, into genome-scale meta-
bolic models, despite the inability of 
steady-state models to predict concen-
trations of metabolites and enzymes? Is 
it possible to infer these regulatory ef-
fects from existing data without having 
to perform expensive and time-
consuming experiments, or do new 
types of data need to be gathered? 

To what extent will approaches for 
creating context-specific  genome-
scale metabolic models based on 
bulk omic data be applicable to 
single-cell data? Will fundamentally dif-
ferent approaches be required to ob-
tain accurate predictions when using 
single-cell data?

Which biotechnological and 
biomedical applications of genome-
scale metabolic models are more sen-
sitive to errors in the structure of the 
model, which are more sensitive to 
the choices made when incorporating 
context-specific omic data, and which 
are more sensitive to the choice of al-
gorithm used to predict fluxes?
One of the only algorithms for predicting distributions of all possible fluxes through GSMMs that 
avoids thermodynamically infeasible cycles is LooplessFluxSampler [113]. Notably, 
LooplessFluxSampler is comparable in speed to the fastest algorithms that do not avoid thermo-
dynamically infeasible cycles [16,106–108,113]. Although LooplessFluxSampler is guaranteed to 
converge for all reactions only if they can simultaneously have nonzero fluxes without forming any 
thermodynamically infeasible cycles, which is generally only true of relatively small models of core 
metabolic pathways, few other algorithms for predicting distributions of possible fluxes are guar-
anteed to converge at all, yet still wind up converging for most GSMMs [113]. Overall, 
LooplessFluxSampler seems an excellent choice for predicting fluxes from GSMMs. 

Concluding remarks 
GSMMs are an approachable and efficient way of keeping track of the current knowledge about 
the biochemical pathways present in individual organisms and can serve as the starting point for
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predicting metabolic fluxes on the basis of fundamental mechanistic principles and simplify-
ing assumptions. As the field has progressed, the interest in applying GSMMs to high-
stakes applications, such as personalized medicine and microbiome engineering, have re-
vealed both the power and the limitations of this approach. Other than the process of 
GSMM reconstruction itself, we believe that the two most challenging obstacles to using 
GSMMs as predictive tools, both rooted in the simplifying assumptions of steady-state met-
abolic models, are the difficulty of tailoring predicted fluxes to particular contexts of interest 
by incorporating measured enzyme, transcript, or metabolite abundances and the exis-
tence of multiple possible predicted fluxes for each reaction.

Predicting metabolic fluxes through an entire cellular metabolic network often involves making a 
series of assumptions, some of which may imply trade-offs between realism and computational 
feasibility. We discussed a number of key assumptions made by existing approaches to creating 
and predicting fluxes from GSMMs and identified cases where it should be possible to use more 
biologically plausible assumptions without sacrificing computational scalability. We also high-
lighted a number of problematic assumptions for which there are no apparent alternatives that 
are simultaneously more realistic and computationally tractable (see Outstanding questions). Al-
though neither method addresses all of the issues we raise with existing approaches to predicting 
fluxes with GSMMs, version 3.0 of GECKO [87] and LooplessFluxSampler [113] collectively ad-
dress most of the limitations we identify with other methods. 

It is worth noting that the most biologically plausible approach we describe for accounting for iso-
zymes and enzyme complexes when creating context-specific GSMMs significantly increases the 
total number of reactions in the GSMM, especially for metabolic models that simultaneously rep-
resent multiple different cell types and their interactions [6,10,14]. Attempts to extend GSMMs to 
also model allosteric regulation [65] may exacerbate this issue further. It is unclear if large models 
and long computation times are unavoidable for accurately modeling cellular metabolism or if an 
alternative modeling paradigm might scale more efficiently without compromising prediction ac-
curacy. An additional complication with integrating multiple different types of data into a single 
GSMM is the difficulty of identifying a particular experimental condition for which all desired 
data types are available. It is possible that novel machine learning algorithms (along the lines of 
those mentioned above for predicting kinetic parameters [101,102]) may alleviate some of these is-
sues with data availability. Even if all of the above issues are resolved for context-specific  GSMMs  
constructed using bulk omic data, recent papers have identified additional obstacles with using 
single-cell omic data to create context-specific GSMMs, and it is unclear how well approaches de-
signed for bulk data will translate to single-cell data (see Outstanding questions) [19,83,85]. Alto-
gether, the limitations and challenges of current approaches presented in this review should be 
seen as opportunities for exploring extended and alternative methods, for rigorously assessing 
the biological/biochemical plausibility of modeling assumptions, and for developing novel strategies 
for creating context-specific  models  .
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