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Highlights
Viruses sense cellular states and envi-
ronmental signals by recruiting host
transcription factors to cis-regulatory
elements (CREs) in viral genomes.

Viral CREs act as signal integration
hubs that impart specificity to viral
gene regulation.

Viral CREs are highly evolvable due to
their high mutation rate and ability to
rapidly change sensing mechanisms,
To withstand a hostile cellular environment and replicate, viruses must sense,
interpret, and respond to many internal and external cues. Retroviruses and
DNA viruses can intercept these cues impinging on host transcription factors
via cis-regulatory elements (CREs) in viral genomes, allowing them to sense
and coordinate context-specific responses to varied signals. Here, we explore
the characteristics of viral CREs, the classes of signals and host transcription
factors that regulate them, and how this informs outcomes of viral replication,
immune evasion, and latency. We propose that viral CREs constitute central
hubs for signal integration from multiple pathways and that sequence variation
between viral isolates can rapidly rewire sensing mechanisms, contributing to
the variability observed in patient outcomes.
affecting infection spread and patient
outcomes.

Latent viral infections can be treated by
targeting viral CREs for reactivation or
permanent silencing.
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Viral sensing strategies
Viruses are obligate pathogens that need viable cells to complete their replication cycle (Figure 1).
To leverage the cell machinery, evade antiviral mechanisms, and initiate viral replication, viruses
must recognize a variety of cell states and environmental cues [1–3]. Viruses have evolved a va-
riety of sensing strategies according to their specific replication cycles and cellular niches, includ-
ing those mediated by viral proteins that sense activation states or that interact with host proteins
involved in cell cycle, cell death, and stress. Given their small genomes, viruses cannot encode
the diversity of protein sensors needed to detect the myriad cell states they could encounter.
One of the main strategies to address this issue involves the sensing of host transcription factors
(TFs) by viral CREs. Eukaryotic cells have a complex system of signal transduction cascades to
detect changes in the extracellular and intracellular environment that ultimately impinge on differ-
ent sets of TFs depending on the trigger signal. In the host, these TFs regulate the activity of pro-
moters and enhancers leading to the upregulation or downregulation of gene expression
programs [4]. Viruses can intercept and exploit these host sensing mechanisms by binding differ-
ent TFs to their own viral CREs (Figure 2). This type of sensing mechanism benefits from the com-
pactness of TF binding sites, the rapid evolutionary gain and loss of binding sites in viral genomes,
the complex repertoire of TFs that respond to multiple signals and states, and the direct link be-
tween sensing and transcriptional regulation of viral effector proteins [5,6].

In a collective effort spanning more than four decades of research, the field has identified hun-
dreds of CREs from retroviruses and double-stranded DNA viruses with many studies describing
the signal inputs and regulatory mechanisms by which these CREs function. Key contributions in
our overall understanding of viral gene regulation include the impact of chromatin states on viral
CRE usage [7–11] as well as the downstream mechanisms of viral gene expression, including
RNA polymerase II (Pol II) pause release and elongation [12,13]. Given the breadth of this field,
this review cannot discuss the outstanding work produced by hundreds of laboratories. Instead,
we aim to provide a broad and synthesized overview of the current knowledge of viral CREs
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Figure 1. Viral replication cycle and transcriptional control. Schematic of a representative replication cycle for
retroviruses and dsDNA viruses. Following initial infection, retroviruses and most dsDNA viruses localize to the nucleus.
Here, these viruses may transition to latency through episome formation (e.g., herpesviruses) or via integration into the
host genome (e.g., retroviruses, nonenveloped dsDNA viruses). Internal or external cues can promote reactivation from
latency or direct entry to the lytic cycle, marked by activation of viral transcription followed by the assembly and release of
new virions.

Trends in Genetics
focusing on their function as sensors of the cellular environment. We describe the main signals
sensed and the TFs involved, how viral CREs act as signal integration hubs, and how they can
rapidly evolve to acquire or rewire sensing strategies. Finally, we discuss the potential targeting
of viral CREs for therapeutic purposes.

Overview of viral CREs
Retroviruses andmost dsDNA viruses express their genes using the host transcriptional machinery
in the nucleus of infected cells [14,15]. This process is controlled by CREs in the viral genome that
activate or repress the transcription of viral genes depending on the stages in the replication cycle
as well as the states of the infected cells. Given the compactness of viral genomes, most of the
identified CREs act as promoter elements; however, some CREs have been shown to act distally
as enhancers upstream or downstream of transcription start sites (TSSs) [16–18]. For example, the
origin of latent replication (oriP) region in Epstein–Barr virus (EBV) is known to act as an enhancer to
the LMP1 gene that is 10 kbp upstream of the oriP [16].

Viral CREs have been identified and characterized using an array of approaches that determine
their location in the viral genome, measure their transcriptional activity under different infection
and cellular conditions, and identify the molecular mechanisms involved in their regulation
(Box 1). Given the mechanistic parallels between viral and host gene expression, viral CREs
often share sequence and functional similarities with host CREs. Many of the seminal studies
in the 1980s on mammalian transcription used viral CREs, such as the SV40 and BKV en-
hancer elements and gene promoters from different viruses, as models for CRE structure
and regulation processes [19–25]. Similar to host cell CREs, viral CREs also utilize TFs to re-
model the chromatin avoiding host repression, recruit RNA Pol II, and promote transcriptional
Trends in Genetics, September 2024, Vol. 40, No. 9 773
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Figure 2. Pathways sensed by viral cis-regulatory elements (CREs). Viral CREs sense immune activation, stress, and
metabolic states, as well as cell proliferation and differentiation by recruiting host transcription factors (TFs) downstream of
these pathways. Abbreviation: vTR, viral transcriptional regulator.
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elongation to regulate the expression of the viral genes [10,11]. The hijacking of host TFs en-
ables the virus to transcribe viral genes immediately after infection, which is necessary to pro-
duce viral proteins such as viral transcriptional regulators (vTRs) that further directly or indirectly
impact the expression of additional viral genes [26]. Ultimately, the recruitment of specific sets
of TFs and vTRs onto the viral CREs determines the appropriate timing and cellular states in
which each viral gene is expressed, leading to productive replication cycles and evasion of
antiviral responses.

The number of CREs across viruses often scales with the number of viral genes and the regulatory
complexity; however, gene-to-CRE relationships are often not one to one [27]. Small viruses,
such as polyomavirus and retroviruses, have one major CRE region, which is generally multifunc-
tional and controls the transcription of the entire viral genome. For example, the long terminal re-
peats (LTRs) of HIV and human T lymphotropic virus (HTLV) are involved in the activation and
silencing of viral transcription controlling both replication and latency [11,28,29]. In these retrovi-
ruses, different genes are produced through alternative splicing of this primary transcript rather
than through different CREs [30]. The noncoding control region (NCCR) of the circular polyoma-
virus also has a dual role, in this case acting as a bidirectional promoter driving the expression of
early genes when transcribing in one direction and late genes in the other, depending on the TFs
recruited to this CRE [31]. For most other dsDNA viruses, the expression of viral genes is often
achieved through independent CREs. For example, human papillomaviruses (HPVs) control the
expression of early and late genes through at least two separate promoters [32–34]. Larger
774 Trends in Genetics, September 2024, Vol. 40, No. 9



Box 1. Identification and characterization of viral CREs

Identification of viral CREs

Prediction of viral CREs has been performed based on the location of viral coding sequences and by mapping TSSs using
5′RACE for individual genes or genome-wide using cap analysis of gene expression (CAGE), a high-throughput approach
to map and quantify TSS activity at single-base resolution (Figure I). This unbiased mapping of TSSs is particularly impor-
tant for large dsDNA viruses that encode multiple coding and noncoding genes and that have complex patterns of regu-
lation depending on the stage in the viral replication cycle [36]. To determine whether the identified genomic regions are
sufficient to drive transcription, reporter assays are commonly used. Bashing experiments, evaluating progressive dele-
tions, internal deletions, mutations, or nucleotide replacements, have been instrumental determining the bounds of CREs
and identifying elements within CREs that activate or repress expression.

Identification of host TFs regulating viral CREs:

To determine the TFs that bind and activate or repress a viral CRE, an array of DNA binding and functional assays is gen-
erally used. Direct binding is often identified using electrophoretic mobility shift assays using purified TF or nuclear extracts
followed by supershift assays, DNase footprinting assays to identify regions in a CRE that are protected fromDNase cleav-
age using nuclear extracts or purified TFs, or yeast one-hybrid assays, a method that can evaluate in parallel the binding of
hundreds of TFs to a DNA element of interest. The functional role of these TFs is generally determined using reporter as-
says where TF binding sites are mutated or by knocking down TF expression. These studies in non-native contexts are
often complemented by ChIP and knockdown of specific TFs in infected cells to identify the cellular and infection stage
contexts in which the TF binds/regulates the viral CRE.
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Figure I. Methods to identify and characterize viral cis-regulatory elements (CREs). (A) Viral CREs are often
predicted based on their location upstream of protein coding sequences, using 5′RACE or cap analysis of gene
expression (CAGE) to identify transcription start sites and using CRE bashing reporter assay experiments. (B) Binding of
transcription factors (TFs) to viral CREs can be determined using yeast one-hybrid assays, ChIP or ChIP-seq, DNase
footprinting in the presence of a TF or nuclear extract, or an electrophoretic mobility shift assay (EMSA). The regulatory
effect of these TFs is often measured in reporter or functional assays overexpressing or knocking down the TF or
mutating TF binding sites.
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dsDNA viruses, such as adenovirus and herpesviruses, have a much more complex CRE
landscape, containing tens to hundreds of CREs to control the convoluted cascade of viral
gene expression required for different stages in viral replication and latency. For instance, adeno-
virus 5 with ~35 kb is known to contain 13 CREs, HSV-1 with ~150 kb contains at least 190CREs
[35], and EBV with ~170 kb contains about 322 CREs [36]. This leads to an estimate of one CRE
per 0.5–5 kb depending on the virus, a similar or higher CRE density than the human genome [37]
and more biased towards promoter rather than enhancer elements.

Viral CREs as sensors of cellular states
Viruses infect different cellular niches and need to sense and respond to diverse cellular and en-
vironmental cues. This is often achieved by recruiting to their CREs an array of TFs that are con-
stitutive and lineage specific and those that respond to immune activation, stress, metabolic
states, or cell proliferation.

Constitutive and lineage-specific TFs
Viral replication often leads to high cellular stress and elicits immune responses, which may cause
apoptosis and early viral clearance. Certain cell differentiation states are less likely to trigger these
events and may constitute permissive environments for viral replication. Viruses, therefore, often
sense cell differentiation states through the binding of cell- and stage-specific TFs to their CREs
to regulate the expression of latent and lytic genes (Figure 2). For example, this is achieved by
recruiting XBP1, upregulated during B cell differentiation, to the EBV major lytic gene BZLF1 and
the KHSV ORF50 gene, both of which lead to active viral replication [38,39]. In addition to
lineage-specific TFs, constitutive TFs such as SP1, SP3, and YY1 that contribute to maintaining
cellular identity also regulate gene expression in many retroviruses and dsDNA viruses [40,41].
The activity of these TFs is often controlled by interacting cofactors and post-translational modifi-
cations, which can be leveraged by many viruses that depend on these TFs for replication. For in-
stance, SP1-dependent viruses such as HSV-1 and HCMV trigger SP1 phosphorylation soon after
initial infection, which leads to lower SP1 activity and reduced expression of target HSV-1 early and
immediately early genes [42]. This primes the virus for latency and avoids immune detection, while
expressing sufficient viral factors necessary for genome integration. YY1, instead, has a dual func-
tion in viral gene inhibition and activation controlled by post-translational modifications and interac-
tions with cofactors, which may be present/active in certain cell stages or conditions [43,44]. This
illustrates how constitutive TFs can also lead to context-specific viral gene regulation.

Immune activation
Sensing of host immune activation states is essential for the regulation of entry and exit from latency
in many viral species. Depending on the virus, immune activation can either stimulate or repress re-
activation, which is likely to reflect different strategies for immune evasion – exit from an immune-
stimulated cell versus avoiding detection altogether. Many viral CREs are regulated by the same
TFs activated during infection, including AP-1, NF-κB, IRFs, NFAT, and STATs (Figure 2), allowing
the virus to differentiate between immune signals and potentially coordinate specific evasion re-
sponses [45]. For example, AP-1 family members such as FOS, JUN, and ATFs activated by differ-
ent immune and stress signals regulate the expression of many CREs from adenovirus,
herpesvirus, polyomavirus, and retroviruses and can be involved in both latency and reactivation
[45]. Similarly, NF-κB, a TF complex that responds to signals transduced via TNF- and Toll-like re-
ceptors as well as nucleic acid sensing pathways, is also recruited to many viral CREs. Binding of
NF-κB to CREs can have different regulatory outcomes, ranging from promotion to prevention of
reactivation in polyomavirus and KSHV, respectively [46,47]. This sensing of the upstream and
downstream antiviral response pathways may afford viruses the ability to more precisely time
their own gene expression to counteract host immunity during exit from latency.
776 Trends in Genetics, September 2024, Vol. 40, No. 9



Trends in Genetics
Cellular stress
Cellular stress often triggers viral reactivation as a way to avoid hostile cell conditions and enable
viral dispersal (Figure 2). Reactivation is induced by hypoxic stress in KSHV and EBV [48,49], fever
and UV light in HSV-1 [50], and DNA damage in HCMV [51]. TFs that act downstream of oxidative
stress pathways, such as HIF1A and EPAS1, activate CREs of KSHV genes [48,52], including the
major regulator of KSHV latency LANA [53], as well RTA and ORF34, both of which are associ-
ated with latency switching and viral production [54]. Stress response factors such as MYC
and TP53 have overall repressive effects on viral CREs, including the LCR of HPV 16 and 18,
the NCRR of BK polyomavirus, and the X gene promoter of hepatitis B virus (HBV) [55–57]. In
many of these cases, early viral genes involved in reactivation (i.e., HPV E6, polyomavirus large
T-antigen, HBV X protein) inhibit TP53 function through a variety of mechanisms including degra-
dation and transcriptional repression [55–57]. This suggests that TP53 binding to viral CREs may
act as a regulatory switch, which, on repression/degradation by viral factors, leads to full-scale
viral reactivation. Some viruses, such as HSV-1 and HPV, sense hormone-mediated stress –

for example, by binding the glucocorticoid receptor NR3C1 to CREs of immediate early or early
genes – promoting viral reactivation [58–60]. Taking these findings together, stress-related TFs
can have both positive and negative effects on viral transcription, highlighting the specificity of
stress signals sensed by viral CREs.

Metabolic states
Cellular metabolism is also an essential state that viruses leverage to control their own latency and
replication (Figure 2). A hallmark example of this metabolic sensing involves HBV, whose main
niche is metabolically active liver hepatocytes. HBV can re-enter the lytic phase in response to
metabolic stress signals sensed through CREs that recognize metabolically related nuclear hor-
mone receptors such as PPARA, RXRA, and NR1H4 [61]. In addition to nuclear hormone recep-
tors, viral CREs also respond to multiple TFs that are modulated by metabolic signaling pathways
such as Akt, TORC, and ERK rather than by direct ligand binding, including CREB1 and FOXO1/3
[62,63]. These pathways sense nutrient availability, growth signals, and metabolic stress and im-
pinge on CREs from HBV and multiple herpesviruses.

Cell cycle and proliferation
Viruses require the host machinery and resources to replicate. These resources, such as nucle-
otides, amino acids, lipids, and biosynthetic enzymes, often fluctuate during the cell cycle and
are more readily available in proliferating cells [64]. In addition, replication during cell division
may favor viral production and allow viruses to evade immune sensing mechanisms such as cy-
tosolic DNA sensing [65]. Therefore, among other mechanisms, viruses can sense and initiate
viral reactivation by binding cell cycle-regulated TFs such as E2F, MYC, TP53, EGR1, and
TEADs to their CREs (Figure 2).

Viral CREs integrate cellular and viral signals
Viral gene expression is a mutistep process that, depending on the virus and gene, can involve
chromatin remodeling, DNA demethylation, and RNA Pol II recruitment, pause-release, and pro-
ductive elongation (Figure 3A) [8–14]. TFs and vTRs are at the center of all of these processes and
mediate the integration of the different signaling pathways into a finely tuned transcriptional out-
put. Therefore, viral CREs, similar to many host CREs regulating immune, stress, and cell differ-
entiation genes, function as signal integration hubs by binding TFs that sense different signaling
cascades and cellular states [45]. This is achieved through multiple mechanisms that include
DNA binding cooperativity or antagonism between different TFs (and vTRs), cooperative recruit-
ment of cofactors, and recruitment of different cofactors with synergistic or antagonistic tran-
scriptional effects (Figure 3B). Collectively, these processes ensure that the regulation of viral
Trends in Genetics, September 2024, Vol. 40, No. 9 777
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Figure 3. Viral cis-regulatory elements (CREs) as signal integration hubs. (A) Consequences of transcription factor
(TF) and viral transcriptional regulator (vTR) recruitment to viral CREs, including remodeling of local chromatin structure,
modification of histone marks or DNA methylation, and alteration of RNA polymerase II (Pol II) recruitment, pause-release,
and elongation. (B) Mechanisms for signal integration including cooperative or antagonistic recruitment of TFs to viral
CREs, co-recruitment of cofactors (COFs) by different TFs, and functional synergism or antagonism between cofactors.
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gene expression depends on simultaneous activation or inhibition signals. This not only provides
specificity but also leads to failsafe mechanisms that prevent unintended viral gene activation,
safeguarding against premature immune detection, unproductive replication, or triggering of
cell death.

Multiple studies have reported cooperative and antagonistic TF binding to viral CREs. Cooperativity
is often associated with heterodimeric TFs but also with TFs that do not necessarily interact but fa-
cilitate each other’s recruitment [66,67]. This cooperativity can lead to robust viral gene expression
when independent signals are present, diminishing the impact of noise in signaling pathway spuri-
ous activation. Cooperativity has also been extensively reported between host TFs and vTRs,
which enables coordination of host cell states with specific stages in viral latency or reactivation
cascades [26]. In addition to cooperativity, a few examples of antagonism due to competition for
binding sites or TF sequestration have been reported [68–70]. Synergism between TFs and signal-
ing pathways can also occur by the cooperative recruitment of cofactors that remodel the chroma-
tin, recruit RNA Pol II, or promote transcriptional elongation (Figure 3B). In addition to cooperative
778 Trends in Genetics, September 2024, Vol. 40, No. 9
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recruitment, TFs that bind a viral CREmay recruit different cofactors that may have additive or syn-
ergistic effects on target gene expression by acting on different steps in transcriptional initiation and
elongation. Conversely, TFs binding to a CREmay have antagonistic effects if they recruit cofactors
with opposing functions, such as a histone acetyltransferase and a histone deacetylase. Both syn-
ergistic and antagonistic recruitment of cofactors are observed in the HIV LTR. During reactivation,
TFs including NFAT, NF-κB, and AP-1 family members recruit histone acetyl-transferases, increas-
ing local chromatin accessibility and facilitating RNA Pol II recruitment and elongation mediated by
P-TEFb [71–73]. By contrast, SP1 and YY1 can recruit HDACs and methyltransferases such as
SUV39H1 to maintain latency [74].

Evolution of viral CREs
The gain of new viral proteins is rare within a particular virus species and evolution of viral protein
sequences to rewire sensing mechanisms often requires multiple nucleotide changes. By con-
trast, sensing through viral CREs is highly evolvable as single nucleotide variants (SNVs) and
indels frequently lead to gain or loss of TF binding sites given their short nucleotide lengths
(Figure 4A). This is similar to what is observed with host CREs, where SNVs affecting a single
TF binding site can cause severe developmental malformations or drive cancer [75–77], but
supercharged by the high mutation rate and large population sizes of viruses. In the case of
viral CREs, sequence variants can lead to sensing variability across isolates both within and
across individuals, having a large impact on viral dispersal and the course of infection. This in-
cludes a variation in the number of binding sites for a TF within the population of viruses, which
may be responsible for differences in patient outcomes (Figure 4B). For example, variation in
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Figure 4. Evolution of viral cis-regulatory elements (CREs). (A) Schematic of transcription factor (TF) binding variation
between CREs from different isolates due to single nucleotide or indel variants. (B) Scatter plot showing the average numbe
of TF binding sites (TFBSs) versus the standard deviation across isolates for TFs that bind to a viral CRE. (C) Viral dendrogram
where isolates are colored based on the number of TF2 binding sites in a CRE. The heatmap shows the fraction of isolates in
each subclade that contain a binding site for TF2 at each position in the CRE.
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the number of NF-κB and NFAT binding sites across HIV-1 clades has been associated with dif-
ferences in LTR transcriptional activities, in responses to the upstream signaling pathways, and in
pathogenesis and transmissibility across isolates [78–81]. Similarly, variation in NFATC3 binding
sites in the BK polyomavirus NCCR has been associated with differences in the recruitment of
RELA and AP-1, in transcriptional activity, in viral production, and in viral reactivation in renal
transplant patients [82,83]. Further, viral CREs from closely related strains can not only differ in
the number of binding sites of a TF but also in their location in the CRE (Figure 4C). This provides
an opportunity for novel signal integration outcomes as gain of binding sites at other locations in a
CRE can create new cooperative or antagonistic relationships with other TFs and cofactors. This
leads to high plasticity and variation in viral CREs, which together with the large viral numbers
within individuals and across the population and the strong selective pressures viruses face,
leads to the selection of variants that can rapidly rewire sensing mechanisms.

Viral CREs as therapeutic targets
Latent infections have been a longstanding medical challenge, which often require lifetime treat-
ment to avoid or manage recurrent infections. In HIV-1, which exhibits latent infection, the stan-
dard course of antiretroviral therapy is unable to eliminate replication-competent provirus
residing in CD4+ T cells [84–86]. Exploratory treatment strategies dubbed ‘shock and kill’ have
been developed to eliminate latently infected cells through reactivation and subsequent immune
clearance of the virus using latency reversing agents (LRAs) [87]. LRAs include compounds that
promote open chromatin such as HDAC, BRD4, or HMT inhibitors, thereby derepressing latent
HIV-1 [88]. Other LRAs involve PKC and TLR agonists, which reactivate HIV-1 via stimulation
of immune signaling pathways, given that the HIV LTR binds immune response TFs such as
NF-κB and AP-1 [88,89]. While shock and kill can provide ameans to target latent viruses, current
methods prove challenging in practice as viral reactivation must be balanced with limited host
tissue damage. An alternative approach, termed ‘block and lock’ seeks to silence HIV-1 using la-
tency promoting agents (LPAs) that insulate the LTR from activating cellular signals for prolonged
drug-free remission [87]. However, the efficiency of both shock-and-kill and block-and-lock strat-
egies is limited due to the intrinsic noise in LTR activation, the variation in HIV LTR sequences
within and across patients, and the influence of integration sites in reactivation or silencing dy-
namics. Current research into the implementation of LRAs and LPAs previously aimed towards
retroviral infections have since been adapted to treat latent herpesvirus infections such as EBV
and HCMV [90,91]. A recently proposed method for the treatment of latent HCMV involving
HDAC inhibition leads to transient expression of lytic immediate early genes without reactivating
the whole virus [92]. While overall these avenues of treatment offer promise, broad challenges
such as toxicity and applicability across latent viral types remain unsolved. Further, the high
evolvability of viral CREs may render shock-and-kill and block-and-lock strategies largely ineffec-
tive, as pressures imposed by treatment may rapidly select for escape variants.

Targeting individual or select groups of viral CREs that control genes that do not lead to reactiva-
tion (e.g., late genes) may prove an effective strategy to signal the immune system for clearance
without reactivating the entire virus and initiating lytic replication. Many TFs, such as nuclear hor-
mone receptors, have specific ligands that activate or repress transcriptional effector functions on
DNA binding. Other TFs can also be directly drugged, their function can be inhibited through sig-
naling pathway perturbations, or they can be selectively targeted for degradation [93]. Unlike
existing methods targeting cofactors, targeting single TFs or small groups of TFs may reduce
the overall likelihood of off-target effects. By leveraging the druggability of such TFs and signaling
pathways, CREs regulating the expression of highly immunogenic viral proteins that are not in-
volved in lytic replication (e.g., capsid, envelope) can be selectively targeted for a precision sensi-
tizing rather than shock-and-kill approach. Alternatively, the disruption of negative regulatory
780 Trends in Genetics, September 2024, Vol. 40, No. 9
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Outstanding questions
What is the full repertoire of CREs for
each virus and in which viral stages
are they active?

Which cellular and environmental
signals impinge on the different viral
CREs and how are these signals
integrated?

What is the impact of different
environmental exposures (e.g., drugs,
xenobiotics, metabolites, other
infections) on viral CRE activity and
reactivation?

How variable are viral CREs across
isolates and how does this affect viral
transmission and the course of
infection?

Which CRE-targeting strategies would
be most effective to treat latent viral
infections?
loops can be effective to increase viral gene expression to cytotoxic levels, inhibiting viral replica-
tion and resulting in a high genetic barrier to resistance [94]. Another approach to prevent viral
replication is to interfere with the typical order of events in the lytic signaling cascade, by targeting
viral CREs to induce the expression of several lytic viral proteins out of signaling order or by
activating single lytic components known to be dependent on other viral proteins for their activity.
Together, these precision sensitizing strategiesmay be able to circumvent some of the issues and
limitations of shock-and-kill and block-and-lock approaches.

Concluding remarks
Ongoing research is shedding light on the complex interactions between viruses and hosts and
how viruses sense, respond, and adapt to host cellular and organismal states. As discussed in
this review, viral CREs are at the center of these sensing and effector mechanisms and constitute
promising targets for antiviral development. However, many challenges remain in the path of iden-
tifying, characterizing, and targeting viral CREs for therapeutics (see Outstanding questions).
High-throughput approaches such as massively parallel reporter assays or STARR-seq can be
used for systematic identification of viral CREs and the cellular contexts in which they are active
[95,96], whereas high-throughput protein–DNA binding assays may lead to the identification of
the TFs and mechanisms involved in viral CRE regulation [97,98]. Leveraging this information
for therapeutic targeting is likely to prove more challenging given the shared regulatory strategies
used by host and viral CREs and the rapid evolution of viral CREs within and across patients,
which could limit broad applicability and may lead to resistance. Viral CRE studies are also critical
for the development of gene therapy, as cryptic CREs present in viral vectors may result in off-
target payload expression [99]. Future research must therefore prioritize not only the discovery
and characterization of viral CREs but also the development of innovative strategies to circumvent
the issues of sequence diversity and specificity, ensuring that therapeutic interventions can be
both effective and broadly applicable.
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