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Abstract

Genetic and genome-wide association studies (GWAS) have
identified a myriad of human disease-associated genomic
variants. However, these studies do not reveal the mecha-
nisms by which these variants perturb cellular networks, a
necessary step to intervene and improve disease outcomes.
This has been challenging because multiple variants are pre-
sent in haplotype blocks, thereby confounding the identification
of causal variants, and because most reside in noncoding re-
gions. Here, we review recent advances in the identification of
functional variants and gene-variant associations. In addition,
we examine approaches used to study perturbations in pro-
tein—protein and protein—DNA interactions associated with
disease, and discuss how these perturbations affect cellular
networks.
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Introduction

Genome-wide association studies (GWAS) and next
generation sequencing have identified tens of thousands
of human disease-associated variants and millions of
single nucleotide polymorphisms [1—3]. Although these
studies have been instrumental for predicting disease
risk, they generally do not reveal the molecular mecha-
nisms that affect cellular function, a necessary step to-
wards developing therapeutics. Understanding the
molecular mechanisms by which some genomic variants
cause disease has been hampered by multiple challenges
in identifying the genes affected by these genomic
changes and in determining how risk alleles perturb
cellular networks. For instance, given that numerous
variants are in linkage disequilibrium, it is not straight-
forward to identify the causal- or disease-associated
variant within a haplotype block [4]. In addition, most

disease-associated variants reside in noncoding regions,
which complicates the identification of the target gene
affected [5]. Furthermore, it is challenging to determine
how these variants perturb physical and functional in-
teractions within cellular networks, and how these per-
turbations lead to disease.

Systems and network mapping approaches are begin-
ning to address some of the roadblocks that have
limited the study of the functional consequences of
genomic variants. These approaches have the potential
to swiftly identify disease pathways and aid in the
design of improved drug therapies. Here, we present an
overview of recent advances in identifying gene-variant
associations and how systems-based approaches are
exploring the ways in which disease variants affect
cellular networks.

Protein-coding variants

Disease-associated variants can affect gene function by
disrupting or creating interactions with other molecules
or by affecting enzymatic activity [6] (Figure 1).
Alternatively, variants can affect transcriptional and/or
post-transcriptional regulation by altering the binding
of regulatory molecules such as transcription factors
(TFs), RNA-binding proteins (RBPs) and micro RNAs
(miRNAs) [7—10] (Figure 1).

Function-disrupting variants have been identified
within protein-coding genes, miRNA and long noncod-
ing RNAs (IncRNAs) [11,12]. Among these, protein-
coding variants have been the most widely studied, as
the genetic code and computational algorithms facilitate
predictions of how protein function is likely to be
affected. Indeed, most variants reported in the Human
Gene Mutation Database (HGMD) and the Online
Mendelian Inheritance in Man (OMIM) database are
nonsense, missense, or frameshift mutations, or are
sequence changes that disrupt splicing to affect protein
structure [12,13]. These variants can alter protein
function (e.g., increase, decrease, or change activity),
and consequently lead to perturbations within the
cellular network [6,14]. For instance, a recent study has
shown that ~25% of disease-associated missense vari-
ants lead to protein inactivation as determined by
increased binding to protein chaperones (suggesting
decreased protein stability), or by the complete loss of
protein—protein interactions (PPIs) in yeast two-hybrid
assays [6]. Interestingly, ~30% of the missense variants
result in edgetic perturbations (i.c., only affect a fraction

Current Opinion in Systems Biology 2017, 3:60—-66

www.sciencedirect.com



Network perturbations by disease variants Sewell and Fuxman Bass 61

Figure 1
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Outline of cellular network perturbations caused by disease-associated variants. Disease-associated variants (red bar) found in haplotype blocks with
common variants (gray bars) must be identified prior to functional studies. Disease-associated variants within regulatory regions can alter gene
expression by disrupting or creating interactions with TFs. Variants residing in untranslated regions can affect the binding of RBPs and miRNA. Protein-
coding variants can affect multiple cellular networks including protein—protein, protein—DNA, protein—RNA and enzyme-metabolite networks leading to
gain and loss of interactions. Variants affecting the sequence and/or structure or miRNAs and IncRNAs can also affect physical interactions with mRNAs
and proteins, respectively. These perturbations in cellular networks underlie the basis of disease. Black solid edges represent physical interactions, red
dotted edges represent lost interactions, blue dotted edges represent gained interactions.

of the PPIs in which the wild-type protein engages),
suggesting partial loss of function [6]. For example, a
study using affinity purification and mass spectrometry
found that melanoma-associated mutations in CDK4
lead to loss of interactions with CDK inhibitors of the
INK family, while other PPIs are retained or increased in
affinity [15]. Importantly, different mutations within a
gene that lead to different losses of PPIs often result in
different disease outcomes, with disease severity
correlating with the proportion of PPIs lost [6]. This
shows that fine-mapping of PPIs with disease-associated
variants may aid in disease stratification, one of the goals
of personalized medicine.

PPI mapping methods reveal the interactions affected
by disease variants but not the phenotypic conse-
quences, which are often inferred based on the location
of the variant within PPI network neighborhoods, con-
nectivity, and protein and domain functions [16,17].
Surrogate genetics provides an alternative method to
study the functional consequences of protein-coding
disease-associated variants. In this case, human patho-
genic variants are tested in yeast complementation
assays to predict their role in disease severity [18].
However, this approach is only suitable for the small
number of genes that have functional homologs in yeast,
and cannot be applied to complex genetic diseases such
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as those that involve multiple genes. A major obstacle in
studying complex genetic diseases is determining how
coding variants genetically interact with other variants.
In this regard, recent high-throughput studies in yeast
have explored epistatic effects and identified ~10°
genetic interactions between 5416 genes and mapped
genetic suppression [19,20]. In addition, synthetic
lethal interactions in humans have been inferred from
cancer genomic data from cell lines and clinical samples,
and identified using gene perturbations [21,22]. Overall,
these studies provide a framework to predict pathways
and networks affected in human disease.

Protein-coding variants can also affect interactions with
other cellular components. For instance, mutations in
TFs not only affect interactions with other proteins such
as cofactors and TFs, but also result in changes in DNA
specificity and affinity, which can ultimately cause gain
and/or loss of protein—DNA interactions (PDIs)
simultaneously affecting many target genes (Figure 1)
[6,7,23]. Mutations in Serine/arginine-rich splicing
factor 2 (SRSF2) have been shown to misregulate
splicing by affecting its affinity for RNA [24]. Overall,
this highlights the importance of delineating reference
physical interaction maps, or inferring them based on
predicted interactions, including PPIs, PDIs, protein—
RNA interactions and enzyme-metabolite interactions
[25—27]. These networks constitute a blueprint for the
study of perturbations caused by disease-associated
variants and provide a framework for the mapping of
cellular functions that may be affected in disease.

Regulatory variants

About 90% of the disease-associated variants identified
in GWAS reside in intergenic or intronic regions
[3,5,28]. Characterizing the functional effects of these
noncoding variants presents additional challenges as
compared to coding variants. Indeed, for noncoding
variants identifying the target gene and the regulatory
function affected is often much more difficult. For
example, multiple regulatory functions can be affected
by noncoding variants including the binding of TFs
[7,8,29], chromatin structure or accessibility [28], DNA
methylation [30,31], and 5" and 3’UTR function [9,32]
(Figure 1).

One challenge encountered when studying noncoding
variants is determining which of the tens of thousands
of variants identified in GWAS are regulatory, given that
many have only modest or no effect on gene expression
[33,34]. Early studies have focused on mutations
residing mostly within promoter regions as these re-
gions are easier to define and then test in reporter
assays. However, the number of variants reported so far,
and the fact that most are located several kilobases
from transcription start sites render this approach
impractical. Multiple studies have prioritized

candidate causal noncoding variants by determining
whether they reside within regulatory regions based on
epigenomic marks such as chromatin accessibility, his-
tone modifications, and regional genomic features
[28,35—37]. In addition, recent studies using massively
parallel reporter assays (MPRAs) have increased the
throughput of functional testing of noncoding variants
[38,39]. This method can evaluate thousands of vari-
ants in a single experiment by taking advantage of
barcode next generation sequencing technology, while
having a similar or higher sensitivity and reproducibility
than low-throughput reporter assays [34]. Using
MPRAS, researchers have identified 842 eQTL variants
with differential allele expression and multiple func-
tional variants associated with red blood cell traits
[34,40]. However, given that variants are evaluated
outside of their genomic context using plasmid con-
structs that are transfected into cell lines, many regu-
latory variants may be missed by this approach.

Another challenge is to identify the gene whose
expression is affected by a noncoding variant as many of
these variants reside hundreds of kilobases away from
their target gene [28]. For instance, a recent study has
shown that the rs1421085 variant associated with
obesity (located within the F70 gene) increases the
activity of an enhancer that controls the expression of
IRX3 and IRX5, located ~1 Mb away [41]. Many
technologies based on crosslinking and ligation of
spatially closed genomic regions, such as Hi-C [42,43]
and chromatin conformation capture by paired-end
tag sequencing (ChIA-Pet) [44], have emerged to
identify target genes affected by noncoding variants.
For example, a recent study examining the chromatin
state effects of variants associated with autoimmune
diseases found that these variants alter gene expression
by disrupting the physical interactions between en-
hancers and promoters [45]. Computational methods
have also been used to identify gene-disease and gene-
variant associations. For instance, gene-disease associ-
ations have been predicted based on genome-scale
shared-function networks [46] and on genomic fea-
tures [47]. Bayesian methods have also been employed
using GWAS data to identify disease-associated genes
by creating tissue specific network maps [48]. Addi-
tionally, gene-variant associations have been deter-
mined by integrating genomic distance and joint
expression/activity between genes and regulatory ele-
ments in given tissues [49].

Variants that affect transcriptional regulation frequently
alter TF binding by either disrupting or creating DNA-
binding sites [7,50]. Studies examining these types of
variants have traditionally been low-throughput: first
predicting differential TF binding using motif analyses,
and then evaluating altered binding in functional assays
such as chromatin immunoprecipitation (ChIP), elec-
trophoretic mobility shift assays (EMSA) and reporter
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assays. Therefore, higher throughput approaches are
needed to test thousands of noncoding variants. Although
great progress has been made in identifying # vivo TF
binding by ChlIP-seq, these studies have been limited to
~20% of human TFs, most tested in a single cell type or
condition [35]. Furthermore, ChIP-seq cannot be applied
to the ab initio discovery of TF binding differences as each
TF needs to be tested in the appropriate tissue/condition
with different allele variants. Alternatively, TF binding
differences between alleles have also been predicted
computationally using motif-based algorithms such as
motifbreakR [51] and CIS-BP [52], or those that also
integrate epigenomic data such as HaploReg [53],
RegulomeDB [54], and RiVIERA [55]. However, motif
predictions often result in false positives and false neg-
atives and, thus require extensive experimental valida-
tion. Moreover, it is likely that only 10—20% of noncoding
variants directly affect a TF binding site, suggesting that
most variants either affect the binding of an uncharac-
terized TF or affect TF binding to nearby regions by
altering DNA structure [56]. In addition, noncoding
variants may affect DNA methylation which can alter TF
binding [30,57], further complicating computational an-
alyses. Thus, efforts have been made to infer differential
TF binding from experimentally-derived allele-specific
DNase I footprinting data across multiple individuals and
cell types [50].

TF-variant-disease associations have also been deter-
mined by integrating allele- or genotype-specific TF

binding between individuals and allele-specific expression

Figure 2

[58]. However, these studies require ChIP data from
many individuals and can be performed with only one TF
at a time. A recent study has used enhanced yeast one-
hybrid assays to increase the screening throughput of
TF binding differences between noncoding alleles [7].
"This study identified differential PDIs for 109 disease-
associated variants showing that these genomic alter-
ations not only lead to loss of TF interactions, but in
~40% of cases promote new interactions, suggesting that
gain of PDIs may be a more prevalent disease mechanism
than previously thought.

Beyond affecting transcriptional regulation, noncoding
variants can also impact post-transcriptional and trans-
lational regulation. Recent studies have identified
multiple disease-associated variants within miRNA gene
regions and within miRNA-binding sites in target
mRNAs [11,59]. Differential binding of miRNA and
RBPs to 3’UTR variants have also been modeled # sifico
[9,10]. This highlights the importance of considering
multiple levels of gene regulation when studying the
functional consequence of noncoding variants.

Conclusions

GWAS constitute the first step towards therapeutic
treatment of genetic diseases by identifying disease-
associated genomic variants. The most conceptually
straightforward approach for treatment would be to
restore the non-risk allele using genome-editing tech-
nologies such as CRISPR/Cas9 or zinc finger- and tran-
scription activator-like effector-nucleases (Figure 2).
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Systems approaches can inform treatment strategies for disease-associated variants. After identifying the risk allele, gene-editing approaches can
potentially be used to restore the non-risk allele. Alternatively, drugs can also be used to target interaction changes, or to affect epistatic genes to

suppress disease phenotypes or to enhance cell death in cancer.

www.sciencedirect.com

Current Opinion in Systems Biology 2017, 3:60—66



64 Clinical and translational systems biology (2017)

Although several studies have made strides toward this
goal in ex vivo cells or in genetic diseases where resto-
ration of function in a fraction of the cells is sufficient to
alleviate disease [60,61], this approach has not yet been
successfully applied in cases where most or all cells need
to be engineered, such as in cancer. Further, genome
editing has the risk of introducing new mutations due to
off target effects. Determining how disease-associated
variants affect cellular networks and mapping network
perturbations are important steps towards designing
alternative approaches to treat genetic disorders
(Figure 2). For instance, gain of PPIs can potentially be
blocked by small molecules, as in the case of Al-10-49
that inhibits binding of CBFR-SMMHGC to RUNX1 in
acute myeloid leukemia [62].

Alternatively, neighborhood location in physical inter-
action networks and epistatic relationships can be
leveraged to suppress a disease phenotype by targeting a
different gene [19—21]. For example, targeting a sup-
pressor of a gene associated with disease can potentially
improve clinical manifestations in genetic disorders.
Similarly, targeting genes that have synthetic lethal in-
teractions with a gene affected by a somatic variant in
cancer has the potential to reduce growth of malignant
cells without affecting non-malignant cells [22]. As tools
and technologies continue to develop, our understand-
ing of the cellular networks and the effects that genetic
variants have on macromolecular interactions will
continue to improve. This will provide a global view of
disease mechanisms, which 1is necessary for the
improvement of therapeutics.
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