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Widespread perturbation of ETS factor
binding sites in cancer

Sebastian Carrasco Pro 1,7, Heather Hook2,7, David Bray1, Daniel Berenzy3,
Devlin Moyer 1, Meimei Yin2, Adam Thomas Labadorf4,5, Ryan Tewhey 3,
Trevor Siggers 1,2,6,8 & Juan Ignacio Fuxman Bass 1,2,8

Although >90% of somatic mutations reside in non-coding regions, few have
been reported as cancer drivers. To predict driver non-coding variants (NCVs),
we present a transcription factor (TF)-aware burden test based on a model of
coherent TF function in promoters. We apply this test to NCVs from the Pan-
Cancer Analysis ofWhole Genomes cohort and predict 2555 driver NCVs in the
promoters of 813 genes across 20 cancer types. These genes are enriched in
cancer-related gene ontologies, essential genes, and genes associated with
cancer prognosis. We find that 765 candidate driver NCVs alter transcriptional
activity, 510 lead to differential binding of TF-cofactor regulatory complexes,
and that they primarily impact the binding of ETS factors. Finally, we show that
different NCVs within a promoter often affect transcriptional activity through
shared mechanisms. Our integrated computational and experimental
approach shows that cancer NCVs are widespread and that ETS factors are
commonly disrupted.

Cancer initiation and progression are often associated with envir-
onmentally inducedor spontaneousmutations, and inheritedgenomic
variants that increase cancer risk1–3. Large scale projects such as the
Cancer Genome Atlas (TCGA) and the International Genome Con-
sortium (ICGC) have identified millions of somatic variants in
tumors4–6. However, in most cases, it is not known whether these
mutations affect any cellular function, confer growth advantage, or are
causally implicated in cancer development7. The difficulty in annotat-
ing variants is that only a few cancer driver mutations are needed to
initiate tumor growth, development, and metastasis and these muta-
tions must be distinguished from thousands of passenger mutations
that do not alter fitness7. Even though more than 90% of somatic var-
iants are in non-coding regions, few non-coding cancer drivers have
been identified6,8,9, highlighting the need for approaches to identify
and validate non-coding variants (NCVs) in cancer.

Mutational burden tests have been used to predict driver NCVs.
These tests are based on determining an increased mutational fre-
quency inDNA regions of interest (e.g., cis-regulatoryelements (CREs))

compared to a background mutational frequency10–18. Methods have
employed a range of different parameters to estimate the background
mutational frequency in CREs, including cancer-specific mutational
signatures, sequence conservation, functional annotations,mutational
frequencies in neighboring regions or other “similar” genomic regions,
replication timing, and expression levels9,19. Despite these varied
approaches to estimatemutational burden and the increasing number
of sequenced tumor samples, studies have only identified ~100 driver
NCVs. For example, burden tests within specific cancer types have
identified NCVs in the promoters of TERT, FOXA1, HES1, SDHD, and
PLEKHS120–22. Further, a global analysis of 2568 cancer whole genome
samples from the Pan-Cancer Analysis of Whole Genomes (PCAWG)
identified driver NCVs in the promoters of TERT, HES1 and seven
additional genes9. Amore recent analysis of 3949 tumors fromPCAWG
and the Hartwig Medical Foundation identified driver NCVs in the
promoters and enhancers of 52 genes19. Additionally, driver NCVs have
been identified in the super-enhancers of BCL6, BCL2, CXCR4 in diffuse
large B-cell lymphomas23. Whether this somewhat limited number of
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driver NCVs is due to a modest contribution of NCVs to cancer or to
limitations of current approaches to identify and validate NCV drivers
remains to be determined.

NCVs in CREs likely affect the binding of transcription factors
(TFs) and the recruitment of regulatory cofactors (COFs) leading to
changes in gene expression8. For example, TERT overexpression, a
major contributor to cancer, is caused by multiple NCVs in its pro-
moter that create ETS factor binding sites24–27. We hypothesize that an
approach to assess NCV burden that accounts for changes in TF
binding may improve the sensitivity to detect mutational burden.

Here, we present a TF-aware burden test (TFA-BT) based on the
assumption that creating (or disrupting) binding sites for a particular TF
at different positions within a CRE will have similar transcriptional
effects and should therefore be grouped together in the burden ana-
lysis. Indeed, it has been reported that TF binding sites (TFBSs) in CREs
frequently occur in homotypic clusters and regulate gene expression
through cooperative and non-cooperative mechanisms28,29. We applied
our TFA-BT to promoter NCVs from the PCAWGdatasets and predicted
2555 cancer driver NCVs in the promoters of 813 genes across 20 can-
cer types. These genes are enriched in cancer-related and essential
genes, and their expression levels are associatedwith cancer prognosis.
To evaluate our TFA-BT NCVs, we used an integrative approach that
combines two high-throughput experimental approaches to assay the
impact of NCVs on gene expression and the disruption of TF-COF reg-
ulatory complexes. UsingMPRAs (massively parallel reporter assays)we
found that 765 TFA-BT NCVs altered transcriptional activity, which is a
similar validation rate to known driver NCVs. Further, using the
microarray-based CASCADE (comprehensive assessment of complex
assembly at DNA elements) assay, we found that 510 TFA-BT NCVs lead
to differential binding of TF-COF regulatory complexes, and impact
primarily the binding of ETS factors. Together, our integrated compu-
tational and experimental approach shows that cancer NCVs are amore
widespread driver mechanism than previously recognized.

Results
Prediction of cancer driver NCVs
We developed a TFA-BT that identifies CREs containing a higher-than-
expected number of NCVs across patients that alter (i.e., create or
disrupt) TFBSs for a particular TF. We applied our TFA-BT to somatic
NCVs in the promoters of protein-coding genes (from −2000 to
+250 bp of the transcription start site). Briefly, for each TF-promoter
pair (A, B) our method counts the number of NCVs predicted to alter
the binding of a specific TF (A) within a promoter (B). We then deter-
mine the probability of this observation given (1) the total number of
observed NCVs in promoter B across a set of patient samples, and (2)
the probability that a random NCV in B (according to the mutational
frequency in the patient samples) alters a binding site for TF A (Fig. 1a).
These TF-promoter pair probabilities are then used to calculate cor-
rected p-values to identify increased mutational burden in particular
promoters. Three different threshold-based approaches were used to
predict differential TF binding to NCV alleles and for the subsequent
steps in the TF-ABT. For robustness we only considered as TFA-BT
NCVs those that were deemed significant (FDR <0.01) using all three
approaches (see Methods). We note that in TFA-BT the mutational
burden in the promoter itself, rather than other similar or neighboring
genomic regions, functions as background to determine enrichment
for altered TF binding. This reduces the need to identify andmodel the
appropriate confounding factors into the burden test, and results in
increased power to identify potential driver NCVs.

We applied the TFA-BT to predict cancer driver NCVs (hereafter
referred to as TFA-BT NCVs) in the promoters of protein-coding genes
using 2654 tumor samples from the PCAWG cohort corresponding to
20 cancer types6. Predictions were performed per cancer type and in a
pan-cancer analysis. In total, we predicted 2555 TFA-BT NCVs in the
promoters of 813 genes, which altered the binding sites of 404 TFs

(Supplementary Data 1). Most TFA-BT NCVs (65%) were obtained from
skin cancer (Fig. 1b). This is not only related to skin cancer samples
having the largest number of promoter NCVs, but also to a higher
fraction of these being predicted as TFA-BT NCVs (Supplementary
Fig. 1a). The majority of TFA-BT NCVs (76%) are associated with the
disruption, rather than gain, of TFBSs. This is likely related to the dis-
ruption of a TFBS having a higher likelihood of being functional and
selected in cancers, as we have previously observed that random gain
and loss of TFBSs in CREs have similar likelihoods30.

We observed a wide range of TFA-BT NCVs per gene (Fig. 1c). In
some cases, such as the highly mutated BCL2 and BCL6, individual TFA-
BT NCVs are generally not recurrent but affect the binding of the same
TFs at different positions in the promoter across tumor samples. In
other cases, such as TERT, a few TFA-BT NCVs are highly recurrent
including thewidely reported chr5:1295228C>T and chr5:1295250C>T
mutations (Fig. 1c, see insert)24,27. We detected TFA-BT NCVs in multiple
genes with reported driver NCVs in promoters, including the highly
mutated PLEKHS1, CDC20, DPH3, and BCL619,21,23,31,32 (Supplementary
Fig. 1b).We also found genes that, to our knowledge, have no previously
reported driver NCVs with TFA-BT NCVs in at least 5% of tumors within
certain cancer types, such as RPL13A (bladder and skin cancer), TEDC2
(skin cancer), and PES1 (skin cancer) (Supplementary Fig. 1b).

Multiple lines of evidence showed that our TFA-BT gene set is
associated with known cancer-related genes, pathways, and functions.
First, we detected a significant enrichment in cellular fitness genes33,
essential genes34, and genes whose expression has been associated
with favorable or unfavorable cancer prognosis35, which was overall
higher than for the well-curated lists of Cancer Gene Census and
IntOGen genes (Fig. 1d)36,37. Second, we identified a significant overlap
with genes whose somatic copy number variation is associated with
changes in their expression across multiple cancer types (OR = 1.42,
p =0.007)38. Finally, we found a significant enrichment in gene ontol-
ogies associated with general and cancer-related cellular processes
(Supplementary Fig. 1c). Interestingly, although many gene ontology
terms overlap between TFA-BT and IntOGen genes (a set of genes with
driver coding mutations), multiple terms are more enriched in either
gene set (Fig. 1e). For example, terms associated with translation and
rRNA processing aremore enriched within TFA-BT genes, whereas cell
cycle, signaling, and transcription terms aremore enriched in IntOGen
genes. This suggests that non-coding and codingmutationsmay affect
genes with different functions.

TFA-BT NCVs alter transcriptional activity
To determine whether the TFA-BT NCVs affect transcriptional activity,
we evaluated the 2555 TFA-BT NCVs and control NCVs using massively
parallel reporter assays (MPRAs)39,40 in Jurkat (lymphoma), SK-MEL-28
(melanoma), and HT-29 (colorectal) cell lines, whichmatch the cancer
types with the most TFA-BT NCVs (Fig. 2a). NCVs that had statistically
significant allelic skewbetween the referenceand alternate alleleswere
called expression-modulating variants (emVars)41 (Supplementary
Data 2). Since only a subset of DNA regions are active (show MPRA
activity for either allele – 1378 for Jurkat, 1118 for SK-MEL-28, and 1144
forHT-29 cells), we calculated the validation rate as the ratio of emVars
over the total number of active DNA regions for each NCV category.
For the TFA-BTNCVs, we detected emVars for 53%, 27%, and 33% NCVs
(q < 0.05) for Jurkat, SK-ML-28, and HT-29 cells, respectively, which
highly overlap between cell lines (Fig. 2b and Supplementary Fig. 2a).
This validation rate is higher than for NCVs with no predicted differ-
ential TF binding (Fig. 2b ‘No differential binding’) or random NCVs
with predicted differential TF binding (Fig. 2b ‘Non-driver differential
TF binding’). The high validation rates for the TFA-BT NCVs are similar
to experimentally reported driver NCVs in promoters (Fig. 2b ‘Repor-
ted driver NCVs’), NCVs leading to an allelic imbalance in ChIP-seq
experiments (Fig. 2b ‘ChIP-seq allelic imbalance’), and disease-
associated germline NCVs that lead to altered target gene expression
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and cause differential TF binding (Fig, 2b ‘Reported germline NCVs’).
Altogether, these results show that the TFA-BT can prioritize func-
tional NCVs.

Most burden tests can identify genomic regions enriched in can-
cer mutations but cannot determine which of the manymutations in a
particular region are actually functional. Interestingly, TFA-BT NCVs
validated at a higher rate than random patient-derived NCVs in the
promoters of genes reported to have high mutational burden (Fig. 2b
‘Random NCVs in reported genes’), suggesting that TFA-BT can better
pinpoint functional NCVs. TFA-BT can also be used to predict likely
functional NCVs. We tested the transcriptional activity of random
NCVs that correspond to significant TF-promoter pairs by TFA-BT but
that were not observed in the PCAWG cohort (Fig. 2b ‘TFA-BT -
unobserved’). These unobserved NCVs validated at a higher rate than
random NCVs in reported genes, suggesting that TFA-BT also has
predictive value for NCVs not observed in the cohort of study.

Recurrency is often used as a criterion to prioritize cancer muta-
tions. Interestingly, we found that the validation rate for TFA-BT NCVs
is similar regardless of the NCV frequency across cancer samples
(Fig. 2c). This suggests that NCVswith lowmutation frequency, such as
those private to particular tumor samples, can also lead to altered
transcriptional activity. The power of TFA-BT to predict functional

private mutations is important given that most cancer mutations are
private as well as most TFA-BT NCVs (Fig. 2d).

We validated TFA-BT NCVs associated with both the gain and loss
of TFBSs. However, we observed a higher validation rate for NCVs that
lose TFBSs (56%, 35%, and 29% in Jurkat, HT-29, and SK-MEL-28 cells,
respectively) than for NCVs that gain TFBSs (40%, 21%, and 14% in
Jurkat, HT-29, and SK-MEL-28 cells, respectively) or NCVs that lead to
gain and loss of TFBSs (46%, 24%, and 23% in Jurkat, HT-29, and SK-
MEL-28 cells, respectively) (Supplementary Fig. 2b). This difference
may be related to a higher likelihood of affecting expression by dis-
rupting an existing TFBS in a CRE than by creating a TFBS thatmay not
be in the appropriate CRE context or distance/orientation to other
TFBSs to affect transcriptional activity.

Most driver NCVs have been identified and characterized in core
promoter regions (−250bp to +250bp from the TSS)9,21. Here, we used
extended promoter regions of −2kb to +250bp from the TSS,
expanding the current analysis landscape. Although the fraction of
NCVs in PCAWG is mostly homogenous throughout the extended
promoter region, we observed an enrichment of TFA-BT NCVs in the
core promoter, even though our model did not incorporate any
additional information beyondTF specificities and promoter sequence
(Supplementary Fig. 2c). This suggests that considering core promoter

Fig. 1 | Identification of TFA-BT NCVs. a Overview of the TFA-BT approach. The
number of observed NCVs across tumor samples that disrupt (or create) a binding
site of TF A in promoter B is compared to the expected probability distribution to
identify significant promoter-TF associations. b Number of TFA-BT NCVs with
predicted gain and/or loss of TFbinding per cancer type. c Scatter plot showing the
number of different TFA-BT NCVs per gene in the PCAWG cohort versus the
number of TFA-BT NCV events in the corresponding promoter in patients from
PCAWG. Insert shows fraction of patients in PCAWG for eachmutation in the TERT
promoter. d Percentage of prognostic (i.e., genes whose expression levels are

favorably or unfavorably associated with cancer), fitness-related, and essential
geneswithin all protein-coding (n = 19,208), IntOGen (n = 561), CancerGeneCensus
(CGC, n = 729), and TFA-BT genes (n = 746). Statistical significance determined by
two-sided Fisher’s exact test compared to all protein-coding genes. Error bars
indicate standard error of the proportion. e Biological process gene ontology fold
enrichment associatedwith different terms for IntOGen andTFA-BTgene sets. Each
dot represents a gene ontology term classified into general classes. Insert shows
overlap between TFA-BT and IntoGen genes. Source data are provided as a Source
Data file.
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regions likely identifies most driver NCVs in gene promoters. Never-
theless, 25.8%of detectedMPRA-validatedTFA-BTNCVs reside outside
the core promoter (upstream of −250 from TSS), suggesting that
interrogating sequences beyond core promoters can also identify
functional NCVs.

To determine whether our TFA-BTNCVs affect gene expression in
patient tumor samples, we compared target gene expression between
PCAWG tumor samples with and without TFA-BT NCVs in their pro-
moters. We limited our analysis to genes with TFA-BT mutations in at
least five tumor samples with available expression data within a par-
ticular cancer type (Supplementary Fig. 3a). We found 11 genes,
including BCL2, DERL1, and IFI44L, in which the presence of TFA-BT
NCVs was associated with differences in gene expression (FDR <0.05,
Supplementary Fig. 3a). Notably, we did not observe increased TERT
gene expression associatedwith previously reported driver NCVs. This
is likely because the analyzes are complicated by the difficulty in
comparing gene expression levels across biological samples, the small
number of sampleswith availableTFA-BTNCVsper gene, and the stage
in cancer development when altered gene expression may occur (e.g.,
during initial stages in cancer development). To determine whether
changes in gene expression caused by TFA-BT NCVs were allele-spe-
cific,wemeasured expression allelic imbalance.We focusedonBCL2 as
this was the gene with the highest number of patients with TFA-BT
NCVs in PCAWG and found that lymphoma patients with TFA-BT NCVs
in the BCL2 promoter showed amarked allelic expression imbalanceof
BCL2 not observed in patients with other or no NCV in the BCL2 pro-
moter (Supplementary Fig. 3b). This supports the gene expression
data results and our general conclusion that TFA-BT NCVs are pre-
dictive of changes in endogenous gene expression.

Profiling the impact of NCVs on gene regulatory complexes
A primary mechanism by which NCVs alter gene expression is by
altering the binding of TF-COF regulatory complexes. To examine the
mechanism of our TFA-BT NCVs, we profiled their ability to alter the
binding of TF-COF complexes. To do this, we employed the recently
described CASCADE method in which protein-binding microarrays
(PBMs) incubated with cell nuclear extracts are used to profile the
differential recruitment of regulatoryCOFs (e.g., BRD4) to Ref/AltDNA
probe sets42 (Fig. 3a and Supplementary Fig. 4). As COFs interact
broadly with many TFs43–45, profiling a single COF can report on many
DNA-bound TF-COF complexes in a parallel manner without requiring
knowledge of the TFs involved. The CASCADE approach provides a

mechanistic annotation to our TFA-BT NCVs that can be integrated
with functional MPRA annotations.

To identify differentially boundNCVs,we profiled the recruitment
of six COFs spanning a range of functional categories: SRC1 (NCOA1) is
a transcriptional coactivator with acetyl-transferase activity; BRD4 is a
chromatin reader and regulatory scaffold; MOF (KAT8) is a histone
acetyltransferase; NCOR1 is a transcriptional corepressor; RBBP5 is a
core member of the MLL/SET histone methyltransferase complexes;
TBL1XR1 is a member of the NCoR corepressor complex. COF
recruitment was profiled using nuclear extracts from Jurkat and SK-
MEL-28 cells to 2956 paired Ref/Alt probe sets that included: 2555 TFA-
BT NCVs, 17 literature-reported driver NCVs, and 384 background
NCVs predicted to not impact TF binding. NCVs that lead to significant
differential recruitment (either gain or loss) of any single COF were
classified as a bmVar (binding-modulating variant) (Fig. 3b, Supple-
mentary Fig. 5, Supplementary Data 3).

Of the 2956 assayed NCVs, we identified 513 bmVars: 510 TFA-BT
NCVs, two literature-annotated driver NCVs, and one background NCV
(Fig. 3c). Critically, bmVars were differentially enriched across the
three allele probe groups (Pearson Chi-square test: p < 7.18 × 10−20),
with highest bmVar enrichment in our predicted TFA-BT group which
was enriched well beyond the background NCVs. Our CASCADE
approach is cell-type dependent, and results will vary based on the
expression levels and interaction strengths of the TFs and COFs
assayed. We identified more bmVars using Jurkat cell extracts but the
general trends across probe groupswereconsistent for both cell types.
Of the 510 TFA-BT bmVarswe identified, themajority were disruptions
in which the NCV led to loss of binding (Fig. 3d). We found that many
bmVars were supported by profiles from multiple COFs (Fig. 3e),
suggesting that either the disrupted TF is interacting with multiple
COFs or multiple TF-COF complexes are disrupted by the NCV. To
determine whether our differential TF-COF binding data may explain
observed gene expression differences, we determined the overlap
between our 510 bmVars and 765 emVars identified for the 2555 TFA-
BT NCVs assayed by MPRAs and CASCADE (Fig. 3f). We found 47.0%
(359 / 765) of the emVars were also characterized as bmVars in CAS-
CADE, despite only six COFs being profiled. This highly significant
overlap (p-value = 4.3 × 10−102 by hypergeometric test, 2.4-fold-enri-
ched) demonstrates that alteration of regulatory complex binding is
strongly predictive of a change in gene expression (i.e., 70%; 359 / 510)
and suggests possible mechanisms for the observed gene expression
effects. Importantly, TFA-BT genes with NCVs classified as emVars or

Test NCVs by MPRAs
(3 cancer cell lines)
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Alt
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GFPRef
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Fig. 2 | TBA-BT NCVs alter transcriptional activity. a Overview of the evaluation
of NCVs by massively parallel reporter assays (MPRAs). b Fraction of NCVs from
each test set within MPRA active regions that show expression allelic skew at dif-
ferent q-value thresholds in Jurkat, SK-MEL-28, and HT-29 cells. c Heatmap of

validation rates in each cell line for NCVspresent in 1, 2, 3, 4, and 5 ormore patients.
d Fraction of TFA-BT NCVs per recurrency (i.e., number of tumors with each NCV)
across patients in PCAWG. Source data are provided as a Source Data file.
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bmVars displayed a higher enrichment in essential, fitness, and prog-
nostic genes than all TFA-BT genes (Supplementary Fig. 6). This sug-
gests that these functional NCVs impact genes with important roles in
cell viability and cancer.

To examine the relationships between COF dependence and gene
expressionweusedUMAP to represent NCVs based on their impact on
COF binding (Fig. 3g). This functional representation of NCVs high-
lights that NCVs vary in their influence on the recruitment of different
COFs. For example, MOF and TBL1XR1 are most strongly disrupted by
different sets of NCVs. Mapping the NCV impact on gene expression
(i.e., logSkew values from MPRA analysis) onto this COF-binding

representation, we find relatively uniform distribution throughout,
suggesting that gene expression data as measured by a reporter assay
is not strongly correlated with the impact on a particular COF (Fig. 3h).
This data suggests that transcription can be impacted by altering the
binding of complexes with diverse COF recruitment characteristics.

TF-ABT NCVs primarily affect the binding of ETS factors
Our TFA-BT approach is based on identifying NCVs that alter TF
binding motifs. In our original analysis, we predicted TFBS alterations
for 404 TFs from multiple TF families. For 48.7% of the NCVs we pre-
dicted binding changes in two or more TFs, and for some NCVs up to

Δ

Δ

ΔΔΔ

ΔΔ Δ

Fig. 3 | Profiling TF-COF complex binding altered by NCVs. a Overview of the
CASCADE method to profile TF-COF complex binding affected by NCVs (Ref -
reference and Alt - alternative alleles).b Impact of TFA-BTNCVs on the recruitment
of SRC1 and BRD4 to 2555 Ref/Alt NCV probes sets assayed using Jurkat T-cell
nuclear extracts. Impact is quantified using -log10(p-value) of the COF recruitment
to the different probe sets and the difference in PBM-determined Z-score between
Ref and Alt alleles (Δz-score). P values are calculated using two-sided Student’s
t-test comparing five replicates of Ref and Alt alleles. The NCVs identified as sig-
nificant are highlighted in red. c Fraction of NCVs from different probe sets iden-
tified as significant by CASCADE in Jurkat and SK-MEL-28 cells. Numbers at the top

of the bars indicate the number of probes tested in each set. d Number of TF-ABT
NCVs leading to loss, gain, or no change (NC) (i.e., both alleles similarly recruit the
COF) of recruitment for each COF tested. eNumber of TFA-BTNCVs that affect the
recruitment of 1 to 6 COFs. f Overlap between the number of TFA-BT NCVs sig-
nificant by MPRAs and CASCADE. g UMAP clustering TFA-BT NCVs based on
Δz-score for each of the six COFs tested. h UMAP depicting the MPRA expression
allelic skew for each TFA-BT NCV. i NCOR recruitment motifs associated with two
TFA-BT NCVs. j BRD4 and TBL1XR1 recruitment motifs associated with NCV at
position chr12:120105668. Source data are provided as a Source Data file.
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62 TFs. Therefore, prediction alone is not sufficient to determine the
TF whose binding is altered by an NCV. To address the identity of the
TF affected by each NCVs, we used CASCADE to determine binding
motifs impacted by the 359 NCVs identified as significant by both
CASCADE and MPRAs (Fig. 3f, Supplementary Data 4). To do this, we
assayed COF recruitment to all single-nucleotide variants spanning
each NCV loci and determined recruitment motifs that can be used to
infer the underlying TFs by matching against TF motif databases
(Supplementary Fig. 7)42. We profiled recruitment of our six COFs,
using Jurkat nuclear extracts, and determined COF recruitment motifs
for 273 loci (Methods). 98% of the COF motifs matched ETS-family
motifs, while the remaining ones resembled ETS motifs but matched
similar looking motifs (e.g., IRF and STAT family motifs).

Most of the identified motifs are single ETS motifs with the NCV
disrupting this single binding site (Supplementary Fig. 8). However, we
also identified 18 composite ETS sites where twomotifs occur together
or separated by up to seven bases (i.e., GGAA-N-GGAA, N = 2,3,5,6,8,9)
(Fig. 3i, j). The presence of composite ETS sites is consistent with their
tendency to cluster in human promoters46. Motifs were consistent
across COF experiments (Fig. 3i, j and Supplementary Fig. 8), demon-
strating that the different COFs are recruited by either the same ETS
protein or by different ETS proteins to the same site(s). While motifs
agree well across COFs, we did find evidence of COF-specific base
preferences at some loci. In the PARS2 promoter, for two sites, we
found that BRD4 was recruited to an extended ETS motif with addi-
tional 5-prime-flank base preferences compared to NCOR (Supple-
mentary Fig. 8). Another example is seen for a composite ETS site
where we found that TBL1XR1 and BRD4 differed in their preferences
for the 2-bp spacer between the sites, with TBL1XR1 preferring the
canonical CC bases while BRD4 preferences were more degenerate
(Fig. 3j). These COF-specific preferences provide a mechanism for the
differential impact of NCVs on COF recruitment at the same loci and
highlight the complexity of determining mechanisms for individual
NCVs even for the same class of TFBSs.

NCVs derived fromhighly prevalentmutational processes affect
transcriptional activity and COF recruitment
Somatic mutations are caused by endogenous and exogenous muta-
tional processes that differ between patients and cancer types leading
to different mutational signatures1,47. We examined the possible muta-
tional processes generating our TFA-BT NCVs using the PCAWG muta-
tional signature assignments. 58% of TFA-BT NCVs were associatedwith
the SBS 7a, 7b, 7c, and 65 UV-light mutational signatures, consistent
with most NCVs being identified in skin cancer (Fig. 4a). We also found
7.4% of NCVs were associated with POLE signatures (SBS61, SBS62, and
SBS10a frequently present in colorectal cancers) and 1.4% were asso-
ciated with APOBEC signatures (SBS2 and SBS13). These highly pre-
valent signatures, which frequently lead to hypermutation, are often
filtered either prior to the burden test or post-test to determine driver
NCV candidates9,21. Interestingly, we found that NCVs associated with
many of these signatures (SBS 7a, 7b, 7c, 13, 61, and 65) validate by
MPRAs at similar or higher rates than other TBA-BT NCVs (Fig. 4a). This
suggests thatmany NCVs excluded fromother burden test analyzes are
potentially functional, affecting transcriptional activity and COF
recruitment (Fig. 4a). In particular, NCVs associated with UV-light
mutational signatures validate at a higher rate thanNCVs not associated
with UV-light (Fig. 4a, b). These UV-light TFA-BT NCVs are enriched at
the GG doublet in the 5’-GGAA-3’ consensus site and downstream
flanking sequence, as previously reported (Fig. 4c)48,49. However, their
effect on gene expression and COF binding has not been fully addres-
sed.We found that these frequentlymutatedbases, inparticular the two
Gs in the 5’-GGAA-3’ consensus ETS site, also correspond to the posi-
tions with the largest perturbation in transcriptional activity and COF
binding (Fig. 4c). Although this is generally consistent across COFs, we
found that mutations in the second G rarely disrupt and often increase

RBBP5 binding. This suggests that the binding of different COFsmay be
differentially perturbed at different positions of the ETS motif. Further,
we found that position information content does not necessarily cor-
relatewith functional changes, asmutations in thefirst A in the 5’-GGAA-
3’ consensus site rarely perturb transcriptional activity andCOFbinding
(Fig. 4c). Altogether, this shows a complex interplaybetweenmutations,
transcriptional activity, and COF binding and underscores the need for
extensive COF profiling.

Mechanistic similarities and differences between NCVs within
promoters
Multiple TFA-BT NCVs in a gene promoter often led to similar tran-
scriptional effects (over or under expression). For example, all vali-
dated NCVs in the TERT promoter led to increased transcriptional
activity, consistent with previously characterized TERT promoter dri-
vers associated with TERT overexpression24,27 (Supplementary Fig. 9).
Conversely, all validated TFA-BT NCVs in the EGR1 and RNF20 pro-
moters led to reduced transcriptional activity (Fig. 5a, b and Supple-
mentary Fig. 9). This is consistent with under expression of EGR1 and
RNF20 being reported in multiple cancer types50–52. For example,
RNF20 under expression due to promoter hypermethylation has been
previously associated with genome instability in multiple cancer
types50,53,54. Our results suggest that reduced RNF20 promoter activity
resulting from NCVs constitutes another potential cancer mechanism.

Similar changes in transcriptional activity between NCVs within a
promoter can either be related to similar changes in COF recruitment
or to different COF recruitment patterns. We found that NCVs within a
promoter have amore similar effect on COF recruitment patterns than
NCVs between promoters (Fig. 5c). For example, four of five NCVs in
the EGR1 promoter led to reduced recruitment of BRD4, MOF, NCOR,
and SCR1, showing mechanistic convergence between different
mutationswithin the samepromoter (Fig. 5a). This convergence can, in
some cases, be explained by NCVs being in close proximity (<10 bp),
likely affecting the sameTFBS; however, other NCVs that similarly alter
COF recruitment are located tens of bp away (Fig. 5a, d chr5:137800743
and chr5:137800840, and Fig. 5b, e chr9:104296044 and
chr9:104296134). Although there is an overall similarity in altered COF
recruitment between NCVs in a promoter, we also observed multiple
cases where NCVs in a promoter alter the recruitment of overlapping
but different sets of COFs (Fig. 5a, b and Supplementary Fig. 8). This
suggests that either a few overlapping COFs may be primarily
responsible for the observed transcriptional effect or that different
COFs can lead to similar transcriptional effects. Finally, we detected
NCVs with altered transcriptional activity where none of the COFs
tested showedaltered recruitment (Fig. 5a andSupplementary Fig. 8b).
We hypothesize that these NCVs may affect transcriptional activity
through altered recruitment of other COFs not profiled in our assay.

Discussion
In this study, we developed a TFA-BT which we applied to 2654 tumor
samples from the PCAWG cohort6 and predicted 2555 driver candi-
dates in the promoters of 813 genes. This is 10- to 20-fold more NCVs
and genes than what has been previously reported9,19–22, showing the
power of our TFA-BT approach. Importantly, one third of the TFA-BT
NCVs displayed expression allelic skew inMPRAs, a similar rate to well-
characterized somatic driver and germline NCVs. Further, this is likely
a conservative estimate given that our MPRAs (i) only evaluate a small
200bp sequence fragment and are missing neighboring chromatin
context39,41, (ii)many (40%)NCVs reside in elements that do not exhibit
activity by MPRA and are thus unable to be evaluated, and (iii) we
evaluatedonly three cell lines in this study.We also found thatonefifth
of the TFA-BT NCVs lead to altered DNA binding of TF-COF complexes
assayed by CASCADE. This is also likely a conservative estimate as only
six COFs were profiled and NCVs show COF specificity. Altogether,
these results show that the TFA-BT can prioritize NCVs that lead to
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altered gene expression and binding of regulatory complexes. The
success of the TFA-BT approach highlights the importance of using
regulatory models in NCV burden tests.

Genes containing TFA-BT NCVs are enriched in translation and
rRNA processing genes. Mutations in the promoters of these genes

may alter their expression leading not only to changes in protein
synthesiswhichcan affect cell proliferation, but also to an imbalance in
ribosome components and free ribosomal proteins. Free ribosomal
proteins caused by altered gene expression or copy number variation
have been shown to affect cell cycle, apoptosis, andDNA repair leading

Δ
Δ

Δ
Δ

Δ
Δ

Fig. 4 | NCVs derived from highly prevalent mutational processes affect tran-
scriptional activity and COF recruitment. aMPRA and CASCADE validation rates
for TFA-BT NCVs associated with different mutational signatures. Only mutational
signatures associated with five ormore NCVs inMPRA active regions in at least one
cell line are shown. Gray cells indicate mutational signatures with less than 5 NCVs
in MPRA active regions in the indicated cell line. The right heatmap depicts the
fraction of TFA-BTNCVs in eachmutation signature that are associatedwith altered
COF recruitment.bMPRAvalidation rate forNCVsassociatedor notwithultraviolet
(UV)-light mutational signature in SK-MEL-28 cells. UV-light + NCVs (n = 967), UV-
light – NCVs (n = 161). Error bars indicate the standard error of a proportion.

Significance determined by two-sided Fisher’s exact test. c Mutational frequency
and effect on transcriptional activity and COF binding for skin cancer TFA-BTNCVs
depending on the position within the ETSmotif. The top violin plot shows the log10
expression allelic skew by MPRA for NCVs affecting different positions within ETS
motifs. The bottom six violin plots show the Δz-score in COF binding between the
reference and the alternative allele based on the position of the NCVwithin the ETS
motif. The median is indicated by the bold horizontal line, and the first and third
quartiles are indicated by the dotted horizontal lines. The bar plot indicates the
number of TFA-BT NCVs affecting each position in the ETS motif. Source data are
provided as a Source Data file.
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to cancer55–57. Our results suggest that mutations in the promoters of
translation genes constitute a potential cancer mechanism.

Most of the TFA-BT NCVs for which we detected altered tran-
scriptional activity reduced gene expression in MPRAs. Given that the
vast majority of cancer mutations are heterozygous, this suggests that
a partial reduction in the expression of most TFA-BT genes may be
sufficient to have a functional role in cancer. Indeed, the hap-
loinsufficiency of multiple genes caused by copy number variation or
promoter methylation has been widely associated with cancer58,59.
Interestingly,we found that 52of theTFA-BTNCVs are biallelic (49-fold
enrichment versus biallelic mutations in PCAWG)60 and 290 pairs of
TFA-BT NCVs are within 10 nt and affect the same TFBS in at least one
donor. This suggests that in many cases, TFA-BT NCVs affect both
alleles either at the same nucleotide position or at different positions
within a TFBS, likely leading to biallelic disruption of gene expression.

We found that NCVs impacting gene expression and regulatory
complex binding primarily disrupted ETS-factor binding sites. This is
consistent with the known role of ETS factors in cancer initiation and
progression61–63. Increased and decreased activity of different ETS
factors has been implicated in all stages of tumorigenesis via diverse
mechanisms, including gene rearrangement and amplification, feed-
forward signaling loops, gain-of-function co-regulatory complexes,
and cis-acting NCVs in ETS target gene promoters64. Our studies fur-
ther identified the disruptionof ETS binding sites in gene promoters as

a widespread cancer mechanism. Whether disruption of ETS factor
binding sites is also frequent in enhancers, which often bind a different
TF repertoire than promoters, remains to be determined. A large
fraction of ETS binding disruption is associated with UV-light muta-
tional signatures and are concentrated primarily in the GG doublet of
the canonical 5’-GGAA-3’ ETS box and downstream bases, as has been
reported48,49. Mutations at these positions have been associated with
increased mutational rates at sites of ETS factor binding and poten-
tially reduced DNA repair65,66, but are mostly considered non-
functional and are, therefore, excluded from most burden tests.
Here, we show that these frequent ETS-disrupting mutations have the
largest transcriptional effects and disruption of COF binding. This
suggests that excluding these mutations, as well as those associated
with other mutational signatures such as APOBEC and POLE, may not
be warranted.

TFA-BT is based on the hypothesis that creating (or disrupting) a
TFBS at different positions within a gene promoter is likely to lead to
similar effects on target gene expression. However, some of these
NCVsmay reside in TFBSs that are not bound or functional in vivo. We
consider this not to be the major driver of our findings as non-
functional NCVs would, in general, not be enriched across patients
given that TFA-BT considers the overall promoter mutational burden
as background. Another possibility is that binding sites predicted to
affect the same TF in a promoter may actually bind TF paralogs with

ΔΔ

Fig. 5 | Altered transcriptional activity and COF recruitment within promoters.
a, b Changes inMPRA activity and COF recruitment for TF-ABT NCV in the (a) EGR1
and (b) RNF20 promoters. The top heatmaps show the log10(p-value) of expression
allelic skew inMPRA in Jurkat, SK-MEL-28, and HT-29 cells. P values were calculated
using two-sided Student’s t-test. The bottom heatmaps show the altered COF
recruitment by CASCADE, which is indicated as Δz-score. Gray cells indicate cases
where the COF was not recruited to either NCV allele. Numbers at the top of the
heatmaps indicate the number of patients in PCAWG carrying the indicated NCV.
Mutation and TSS coordinates are indicated. c Pearson correlation coefficient

(PCC) between Δz-score in CASCADE for each COF between pairs of TF-ABT NCVs
within a gene promoter (n = 510) and between gene promoters (n = 258,810). Each
box spans from the first to the third quartile, the horizontal lines inside the boxes
indicate the median valuen, the whiskers indicate 1.5x the interquartile range, and
the points indicate outliers. Significance determined by two-sided Mann–Whitney
U test. d, e COF recruitment motifs determined by single nucleotide variant scan-
ning using CASCADE for the NCVs indicated in a-b. Source data are provided as a
Source Data file.
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different effector functions. However, this does not seem to occur
frequently, as most TFA-BT NCVs in a promoter tend to perturb tran-
scriptional activity in the same direction (activation or repression).

Although TFA-BT is focused on individual TFs, NCVs that affect
the binding of different TFs within a promoter can also have a similar
effect on gene expression. This may be the case for NCVs within a
promoter that alter the recruitment of similar COFs. Indeed, we found
that different TFA-BT NCVs within a promoter often share similar
changes in COF recruitment, suggesting shared mechanisms. This
supports a potential extension of our approach to develop a COF-
aware burden test. This type of test would require knowledge of the
COFs that are highly active in a tumor sample as well as the TFs
involved in the recruitment of suchCOFs. Future studies incorporating
information on TF-COF complexes will allow us to extend our pre-
dictions to other CREs and TFs that may not necessarily function
through homotypic clusters.

Methods
Altered transcription factor binding predictions
To predict the effect of all possible NCVs in the human genome on TF
binding, for each possible NCV and each TF with available position
weight matrices (PWMs), we determined the binding score corre-
sponding to the reference and alternative sequences. We downloaded
1898 PWMs corresponding to human TFs fromCIS-BP on April 3, 201867

and their corresponding TF family. Given a PWM of length n and a
genomic position (hs37d5 from the 1000 Genome Project), for each of
the 2n-1DNA sequences on each strandof length n that overlapwith the
genomicposition,wedetermined aTFbinding score using the function:

F s,Mð Þ=
Xn

i = 1

log
Msi ,i

bsi

 !
ð1Þ

where s is a genomic sequenceof lengthn,M is the PWMwithn columns
andeach column inM contains the frequencyof eachnucleotide in each
position i = 1,…,n, and bsi is the background frequency of nucleotide si
assuming a uniform distribution. The highest score obtained for the 4n-
2 sequences (2n-1 sequences in forward and reverse strands) was
assigned as the binding score corresponding to the PWM for the
reference or alternate NCV alleles. Significant scores were selected and
reported based on TFM-pvalue68 score thresholds determined using a
significance level α= 10-4. This method was applied for each reference
position and the three possible alternative alleles for the entire human
genome (hs37d5) to create an altered TFBS database, a genome-wide
catalogofNCV-TF effects. CustomCscriptsweredeveloped to generate
this dataset using GPUs and the data was stored in the Hadoop servers
at Boston University (www.github.com/fuxmanlab/altered_TFBS).

ChIP-seq allelic imbalance analysis
To estimate optimal threshold(s) of motif scores differences for a
given PWM between a reference allele and alternative allele to predict
allelic imbalance in TF binding, we used available ChIP-seq experi-
mental data. ChIP-seq experiment FASTQ files were downloaded from
the ENCODE Project69 for 14 datasets (55 experiments) performed in
cell lineswith normal karyotype (SupplementaryData 5). Thefiles were
aligned using BWA70 and pre-processed using standard GATK
methodology71. Variant calling was performed on the aligned BAM files
using GATK Variant Discovery pipeline (v2)71 and BCF Tools (v.1.9)12.
The intersection of variants from both tools was used to extract the
allele read counts for each variant. Allelic imbalance analysis was per-
formed for heterozygous positions in promoters for each experiment.
A binomial test was used to identify NCVs located in positions where
reads were not evenly distributed (0.5 for each allele).

Differential predicted binding events were calculated by compar-
ing themotif score of each alternative to its reference allele. Thresholds
of two types were generated for gain/disruption of TFBSs to determine

their ability to predict ChIP-seq allelic imbalance: 1) when only the
reference or alternate allele pass the binding threshold for the motif
determined by TFM-pvalue68, or 2) when at least one allele passed the
motif binding threshold and the difference in score between alleles
(allele score) is above a certain value ranging from0 to 7. To benchmark
our predictions, for each TF, we used NCVs in allelic imbalance in ChIP-
seq as true positives and those not in allelic imbalance as true negatives,
and compared to predicted gain/loss of TFBSs in the same direction as
the allelic imbalance. F-values and relative accuracies were calculated
for all thresholds. Based on the F-values, we selected three parameter
settings: 1) either the reference or alternate allele pass the binding
threshold for themotif determined by TFM-pvalue, 2) at least one allele
passed themotif binding threshold and the difference in score between
alleles was greater than two, and 3) at least one allele passed the motif
binding threshold and the difference in score between alleles was
greater than three. These three parameter settings were independently
used for the TF-aware burden test (TFA-BT) as described below in sec-
tion titled “Development of the TF-aware burden test.”

Processing of PCAWG mutational data
We downloaded VCF files of 2654 samples from the PCAWG cohort6

using the ICGC portal5 (Jan 23, 2019). We considered only single-
nucleotide variants (SNVs) and excluded multi-nucleotide variants
from the analyzes. To identify NCVs in promoter regions, we used
BEDTools (v.2.27.0) intersection command72. Promoters from protein-
coding genes were defined as regions between –2 kb to +250bp from
the transcription start sites (TSSs) annotated in GENCODE v1973. In the
case of overlapping alternative promoters, promoter regions were
merged to prevent over-counting. To avoid considering protein-
coding regions, in the case of alternative promoters, we filtered
“coding_regions” using the GENCODE v1973 (Jun 14, 2018) annotation.
We used the R package IRanges (v.2.12)74 to determine the promoter
coordinates, and BEDTools (v.2.27.0)72 was used to remove promoter
coordinates overlapping with coding regions (Supplementary Data 6).

Development of the TF-aware burden test
We designed the TFA-BT to determine whether the number of NCVs
observed inpromoter B that led to creation (or disruption) of a binding
site for PWM A is more than expected by chance, given the total
number of mutations observed in promoter B across samples within a
certain cancer type. The number of promoter NCVs that create (or
disrupt) a binding site for PWM A in promoter B follows a binomial
distribution P(n, p), where n is number of NCVs in promoter B across
patients, andp is theprobability that anNCV inBcreates (or disrupts) a
binding site for PWM A.

The probability (p) was estimated as:

p=
X
i= L

j =4

i= 1

j = 1

FðBi,MjÞ:CðPWM A,Bi,MjÞ ð2Þ

where F(Bi, Mj) is the probability of changing the reference base at
position i in promoter B to the mutated baseMj, C(PWM A, Bi, Mj) is 1 if
mutating Bi toMj leads the creation (or disruption) of a binding site for
PWM A and 0 otherwise, and L is the nucleotide length of promoter B.
F(Bi, Mj) was calculated based on the genome-wide mutational
frequencies in a cancer type, whereas C(PWMA, Bi, Mj)was determined
by calculating the motif score difference between the sequence
surrounding position i for the reference and alternate alleles. These
motif scores were obtained by querying the altered TFBS database.We
used thresholds obtained from the TFMp-value algorithm68 to
determine whether a motif score is significant, and the three different
thresholds selected from the ChIP-seq allelic imbalance analysis. For a
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given set of tumor samples, we calculated P(n,p) for each PWM-
promoter pair using each of three thresholds selected independently,
followed bymultiple hypothesis testing correction using FDR. Of note,
given that for a particular threshold NCVs are deemed significant only
after comparing to the expected background using the same thresh-
old, NCVs identified as significant using the three thresholds are
overlapping but not subsets of each other. For robustness and to
increase confidence in our predictions, only PWM-promoter associa-
tions that were significant with an FDR <0.01 using all three score
thresholds independently were considered in subsequent analyzes.
Then, we selected the NCVs from the PCAWG samples6 located in the
promoters with significant promoter-PWM associations that were
associated with differential scores of the corresponding PWM. Finally,
we applied the TFA-BT to tumor samples from each of the 20
cancer types, as well as to all PCAWG samples in a pan-cancer analysis
to identify predicted driver NCVs (TFA-BT NCVs). Supplementary
Data 1 reports the list of TFA-BT NCVs identified, their genomic
information, motif scores, frequency in different cancer types, and
cancer types in which the NCVs were identified as TFA-BT NCVs. In
addition, we report for each of the three thresholds used whether the
TFA-BT NCVs were significantly associated with loss or gain of TF
binding. All PWMs significantly associated with differential TF binding
to a specific NCV for at least one threshold are reported. Given that
often multiple PWMs may be associated with altered TF binding, for
some PWM-NCV combinations not all three thresholds may be
significant.

Computational validation of TFA-BT NCVs
To identify functional gene sets associated with the 813 genes con-
taining TFA-BT NCVs in their promoters, we used Metascape to obtain
fold-enrichments and q-values for overlaps with GO, Reactome, and
PANTHER gene sets75. As a comparison, functional enrichments were
also determined for driver genes from IntOGen36. Enrichments were
only computed for GO Molecular Functions, GO Biological Processes,
Reactome Gene Sets, and PANTHER Pathways. TheMetascape filtering
parameters were set to very lenient values: the min overlap parameter
was set to 3 genes, the p-value cutoff to 1, andminimum enrichment to
1. Functional genes sets with q-values > 0.05 for TFA-BT and IntOGen
gene lists were removed, and the remaining gene sets were manually
grouped into categories to facilitate comparisons of fold-enrichments
between the TFA-BT genes and IntOGen genes. Gene ontologies were
classified into supra-categories to facilitate comparisons.

We also compared enrichments of essential, fitness, and prognosis
genes between TFA-BT, Cancer Gene Census37, and IntOGen36 genes,
relative to all protein-coding genes (downloaded from the HUGO Gene
Nomenclature Committee at the European Bioinformatics Institute
www.genenames.org; filename gene_with_protein_product.txt). The list
of genes identified as essential in all cell lines in the DepMap Achilles
project was downloaded from the DepMap 21Q4 release (filename
CRISPR_common_essentials.csv)76. The list of fitness genes was derived
from the Fitness/Non-Fitness Binary Matrix (filename binaryDepScor-
es.tsv) downloaded from the DepMap ProjectScore website77. Only
genes designated as “fitness” genes in at least 10 cell lines were con-
sidered “fitness” genes for the enrichment analyzes. The list of prog-
nostic genes was derived from the pathology data from the Human
Protein Atlas version 21.035 (filename pathology.tsv). Genes with
reported p-values (from Kaplan–Meier log-rank tests of the correlation
between the mRNA level of each gene and survival of patients in a
specific cancer type) for one or no cancer types were discarded. For the
remaining gene-cancer pairs, p-values associated with favorable or
unfavorable prognosis were adjusted using an FDR correction and fur-
ther filtered for q-values of less than 0.01. Genes passing this threshold
in at least one cancer type were considered prognostic.

Odds ratios and p-values for enrichments of essential, fitness, and
prognostic genes among the TFA-BT, Cancer Gene Census, and

IntOGen genes were computed using Fisher’s exact tests. Enrichments
of essential genes used the list of all protein-coding genes as the
background, enrichments of fitness genes used the list of all genes in
the unfiltered file downloaded from the ProjectScore website, and
enrichments of prognostic genes used the list of all genes in the
unfiltered file downloaded from the Human Protein Atlas website.
Confidence intervals for the proportions of enriched genes were
computed using Wald intervals.

Structural variation has been associated with changes in gene
expression. We obtained genes associated with changes in gene
expression caused by structural variation across 21 TCGA cohorts38

(May 25, 2020), and considered genes with altered gene expression in
more thanfivecancer types.We thencalculated theenrichmentof these
genes in the 813 TFA-BT gene set using a proportional comparison test.

Association of TFA-BT NCVs and gene expression
Aligned BAM files corresponding to 1366 samples were downloaded
from ICGC. BAM files were converted to FASTQ files using the SAM-
tools fastq function70. Then, Salmon78 was used to quantify the
expression of the human transcriptome (Ensembl, May 30, 2019) in
transcripts per million (TPM). The expression of each gene transcript
was added to obtain the gene TPM expression. For each gene, differ-
ential expression was determined between patients with and without
TFA-BT NCVs in the gene promoter. Only genes with at least five ICGC
donors within the same type of cancer and at least one TFA-BT NCV in
the promoter were considered. A student’s t-test was performed to
determine differential expression and P-values were adjusted with
FDR. Expression allelic imbalance for BCL2 in lymphoid cancer was
calculated as the ratio between reads corresponding to alleles of
common SNVs within transcribed regions reported by PCAWG.

MPRA library construction
The MPRA library was constructed as previously described39. Briefly,
oligos were synthesized (Agilent Technologies) as 230bp sequences
containing 200bp of genomic sequences and 15 bp of adaptor
sequence on either end. Unique 20 bp barcodes were added by PCR
along with additional constant sequences for subsequent incorpora-
tion into a backbone vector (addgene #109035) by Gibson assembly.

The oligo library was expanded by electroporation into NEB 10-
beta E. coli, and the resulting plasmid library was sequenced by Illu-
mina 2 × 150bp chemistry to acquire oligo-barcode pairings. The
library underwent restriction digestion using AsiSI, and GFP with a
minimal TATA promoter was inserted by Gibson assembly resulting in
the 200bp oligo sequence positioned directly upstream of the pro-
moter and the 20bp barcode residing in the 3’ UTR of GFP. After
library expansion in E. coli, the final MPRA plasmid library was
sequenced by Illumina 1 × 26 bp chemistry to acquire a baseline
representation of each oligo-barcode pair within the library.

The library is comprised of nine sets of test sequences: 1) TFA-BT
NCVs (2555NCVs); 2) TFA-BT – unobserved (534NCVs), corresponding
to random NCVs that correspond to significant TF-promoter pairs by
TFA-BT but that were not observed in the PCAWG cohort; 3) ChIP-seq
allelic imbalance (281 NCVs), corresponding to a subset of NCVs that
showed allelic imbalance in TF binding in ENCODE; 4) Reported driver
NCVs (17 NCVs), corresponding to well characterized cancer driver
NCVs; 5) Reported germline NCVs (97 NCVs), corresponding to
disease-associated NCVs that show differential transcriptional activity
or TF binding by enhanced yeast one-hybrid assays; 6) Random NCVs
in reported genes (1298 NCVs), corresponding to random NCVs
observed in PCAWG within the promoters of genes reported to have
high mutational burden; 7) No predicted TF binding (500 NCVs),
corresponding to NCVs that do not reside within TF binding sites; 8)
No differential binding (500 NCVs), corresponding to NCVs with no
predicted differential TF binding; and 9) Non-driver differential TF
binding (500 NCVs), corresponding to random NCVs in non-driver
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gene promoters with predicted differential TF binding (Supplemen-
tary Data 7).

In addition, we included three classes of technical controls to
evaluate the sensitivity of eachMPRA experiment. 1) Negative controls
(506 sequences) were selected from previous experiments for not
having activity across multiple cell types. 2) Positive activity controls
(119 sequences) were selected for activity in multiple cell types from
previous experiments. Elements were selected across the activity
spectrum (e.g., not just high expressors). 3) MPRA emVar controls (64
NCVs) measuring allelic effect variants selected for showing allelic
skew in multiple cell types from previous experiments (Supplemen-
tary Data 7).

MPRA library transfection into cell lines
Jurkat cells (ATCC - TIB-152) were grown in RPMI with 10% FBS to a
density of 1million cells permL prior to transfection. HT-29 cells (ATCC
-HTB-38)were cultured inMocoy’s 5amediawith 10% FBS, and SK-MEL-
28 cells (ATCC - HTB-72) in EMEM supplemented with 10% FBS. Six
electroporation replicates were performed on separate days by col-
lecting 90 million cells and splitting across nine 100 uL transfections
each containing 10 ug ofMPRA plasmid. Cells were electroporated with
the Neon Transfection System (100μl kit) using three pulses at 1350V
for 10ms for Jurkat cells, two pulses at 1300V for 20ms for HT-29 cells,
and one pulse at 1200V for 40ms for SK-MEL-28 cells. After transfec-
tion each replicate was split between two T-175 flasks with 150mL of
culture media for recovery. After 48 h, the cells were pelleted, washed
three times with PBS, and stored at –80 °C for later RNA extraction.

RNA extraction and MPRA RNA-seq library generation
RNA for all cell lines was extracted from frozen cell pellets using the
QiagenRNeasyMaxi kit. Half of the isolated total RNAunderwentDNase
treatment and a mixture of three GFP-specific biotinylated primers
(#120, #123 and #126)(Supplementary Table 1a) were used to capture
GFP transcripts with Streptavidin C1 Dynabeads (Life Technologies). An
additional DNase treatment was performed. cDNA was synthesized
from GFP mRNA using SuperScript III and purified with AMPure XP
beads. Quantitative PCR using primers specific for the GFP transcript
(#781 and #782)(Supplementary Table 1a) was used to measure GFP
transcript abundance in each sample. Replicates within each cell type
were diluted to approximately the same concentration based on the
qPCR results. Illumina sequencing libraries were constructed using a
two-step amplification process to add sequencing adapters and indices.
An initial PCR amplification with NEBNext Ultra II Q5 Master Mix and
primers 781 and 782 were used to extend adapters. To minimize over-
amplification during library construction, the number of PCR cycles
used in the first amplification was selected based on where linear
amplification began for each cell type (Jurkat: 10 cycles, SK-MEL-28 &
HT-29: 13 cycles). A second6cyclePCRusingNEBNextUltra IIQ5Master
Mix added P7 and P5 indices and flow cell adapters (Supplementary
Table 1b). For SK-MEL-28 samples we failed to recover enough product
during the first amplification and processed the second total RNA ali-
quot using the same protocol, pooling the two preparations prior to
sequencing. The resulting MPRA RNA-tag libraries were sequenced
using Illumina single-end 31 bp chemistry (with 8 bp index read), clus-
tered at 80–90%maximumdensity on a NextSeq High Output flow cell.

MPRA quality control and data analysis
To evaluate the quality of our MPRA libraries we determined the
number of barcodes per sequence, the correlation between replicates,
and the activity of positive and negative controls. The oligo library was
covered by ameanof 215 barcodes in the plasmid library, 182 barcodes
in Jurkat, 106 barcodes in HT-29, and 71 barcodes in SK-MEL-28 cells
(Supplementary Fig. 10a) andwedetermined that97.6%of oligos in the
plasmid library, 96.8% in Jurkat, 94% inHT-29 and 87.9% in the SK-MEL-
28 libraries were recoveredwith 10 ormore barcodes, respectively.We

observed high correlations of oligo counts in the biological replicates
for Jurkat and SK-MEL-28 cells (pearson R ranged from 0.96–1) and
reasonable correlations between HT-29 replicates (pearson R ranged
from 0.85–0.98) (Supplementary Fig. 10b). We also show that our
MPRA experiments in all three cell lines clearly distinguish the activity
of positive and negative controls (Supplementary Fig. 10c–e). These
three measures illustrate the high-quality of the MPRA experiments.

Data from the MPRA was analyzed as previously described39.
Briefly, the sum of the barcode counts for each oligo were provided to
DESeq2 (v.1.28.0)79 and replicates were median normalized followed
by an additional normalization of the RNA samples to center the
average RNA/DNA activity distribution of the 506 negative control
sequences over a log2 fold change of zero. This normalization was
performed independently for each cell type. Dispersion-mean rela-
tionships were modeled for each cell type independently and used by
DESeq2 in a negative binomial distribution to identify oligos showing
differential expression relative to the plasmid input. Oligos passing a
false discovery rate (FDR) threshold of 1%were considered tobe active.
For sequences that displayed significant MPRA activity, a paired t-test
was applied on the log-transformed RNA/plasmid ratios for each
experimental replicate to test whether the reference and alternate
allele had similar activity (Supplementary Data 2). An FDR threshold of
5% was used to identify SNPs with a significant skew in MPRA activity
between alleles (allelic skew).

Mutational signatures for MPRA validated drivers
NCVs can be caused bymultiplemutational processes such asUV-light.
We used ICGCprobabilities for eachNCV-donor combination to assign
them a givenmutational process if its probability is greater than0.5, as
described9. Then, we compared the MPRA and CASCADE validation
rates for TFA-BT NCVs associatedwith differentmutational signatures.
We used UV-light associated signatures9 BI_COMPOSITE_SNV_SBS7a_S,
BI_COMPOSITE_SNV_SBS7b_S, BI_COMPOSITE_SNV_SBS7c_S, BI_COM-
POSITE_SNV_SBS3_P, BI_COMPOSITE_SNV_SBS55_S, BI_COMPOSI-
TE_SNV_SBS67_S, BI_COMPOSITE_SNV_SBS75_S.

Cell culture and nuclear extraction for CASCADE
Jurkat cells, were obtained from ATCC (TIB-152). The cells were grown
in suspension in RPMI 1640 Glutamax media (Thermofisher Scientific,
Catalog #72400120) with 10% heat-inactivated fetal bovine serum
(Thermofisher Scientific, Catalog #132903). T175 (Thermofisher Sci-
entific, Catalogue #132903) non-treated flasks were used when cul-
turing Jurkat cells for experiments. Cellswere grown in 50mLofmedia
when being cultured in T175 flasks.

SK-MEL-28 cells were obtained from the Tewhey lab to ensure the
same cells used for theMPRA experimentswere used for the CASCADE
experiments. The cells were cultured using EMEM media (ATCC, Cat-
alog #30-2003) with 10% heat-inactivated fetal bovine serum (Ther-
mofisher Scientific, Catalog #132903). Cells were grown in 30mL of
media when being cultured in T225 flasks for adherent cells (Corning,
Catalog #35138).

Nuclear extracts were obtained as previously described42,80, with
modifications detailed below. To harvest nuclear extracts from Jurkat
cells, the cells were collected in a falcon tube and placed on ice. To
harvest nuclear extracts from SK-MEL-28 cells, the media was aspirated
off and the cellswerewashedoncewith 1XPBS (Thermofisher Scientific,
Catalog #100010049). Once the 1X PBS used to wash the cells was
aspirated off, enough 1X PBS wasmixed with 0.1mM Protease Inhibitor
(Sigma-Aldrich, Catalogue#P8340) to cover the cells was added to each
flask. A cell scraper was used to dislodge the cells from the flask, and
cells were collected in a falcon tube and placed on ice. Jurkat and SK-
MEL28 cells were pelleted by centrifugation at 500×g for 5min at 4 °C.
Both pellets were washed with 2mL of 1X PBS with Protease Inhibitor
and pelleted again at 500×g for 2min at 4 °C. To lyse the plasma
membrane, the cells were resuspended in Buffer A (1mL Buffer A for
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Jurkat cells, 1.5mL Buffer A for SK-MEL28 cells) (10mM HEPES, pH 7.9,
1.5mM MgCl, 10mM KCl, 0.1mM Protease Inhibitor, Phosphatase
Inhibitor (Santa-Cruz Biotechnology, Catalog #sc-45044), 0.5mM DTT
(Sigma-Aldrich, Catalog #4315) and incubated for 10min on ice. After
the 10min incubation, Igepal detergent (final concentration of 0.1%)
was added to the cell and Buffer A mixture and vortexed for 10 s. To
separate the cytosolic fraction from the nuclei, the sample was cen-
trifuged at 500× g for 5min at 4 °C to pellet the nuclei. The cytosolic
fraction was collected into a separate microcentrifuge tube. The pel-
leted nuclei were then resuspended in Buffer C (100 µL for Jurkat nuclei
and 150 µL for SK-MEL-28 nuclei) (20mM HEPES, pH 7.9, 25% glycerol,
1.5mM MgCl, 0.2mM EDTA, 0.1mM Protease Inhibitor, Phosphatase
Inhibitor, 0.5mM DTT, and 420mM NaCl) and then vortexed for 30 s.
Toextract thenuclear proteins (i.e., the nuclear extract), the nucleiwere
incubated in Buffer C for 1 h while mixing at 4 °C. To separate the
nuclear extract from the nuclear debris, the mixture was centrifuged at
21,000×g for 20min at 4 °C. The nuclear extract was collected in a
separate microcentrifuge tube and flash frozen using liquid nitrogen.
Nuclear extracts were stored at ‒80 °C.

CASCADE PBM experimental methods
All experiments were performed using the 4-chambered, 4x180K Agi-
lent microarray platform (design details described below). DNA
microarrays were double stranded as described in Berger et al.81. PBM
experiments using cell extractswereperformed following the protocols
previously described80,82 and outlined below. The double-stranded
microarray was pre-wetted in HBS+TX-100 (20mM HEPES, 150mM
NaCl, 0.01% Triton X-100) for 5min and then de-wetted in an HBS bath.
Each of the microarray chambers were then incubated with 180μL of
nuclear extract binding mixture for 1 h in the dark. Nuclear extract
bindingmixture (per chamber): 400–600μg of nuclear extract; 20mM
HEPES (pH 7.9); 100mMNaCl; 1mMDTT; 0.2mg/mLBSA; 0.02%Triton
X-100; 0.4mg/mL salmon testes DNA (Sigma-Aldrich, Catalog #D7656).
The microarray was then rinsed in an HBS bath containing 0.1% Tween-
20 and subsequently de-wetted in anHBSbath. After thenuclear extract
incubation, the microarray was incubated for 20min in the dark with
20μg/mL primary antibody for the TF or COF of interest diluted in
180μL of 2% milk in HBS (Supplementary Table 2). The following pri-
mary antibodies were used to probe cofactors on the arrays: BRD4
(ThermoFisher Scientific,Cat#A301-985A50); TBL1XR1 (SantaCruz,Cat
# sc100908); SRC1 (Santa Cruz, Cat # sc32789x); MOF (ThermoFisher
Scientific, Cat # A300-992A); RBBP5 (ThermoFisher Scientific, Cat #
A300-109A); NCOR1 (ThermoFisher Scientific, Cat # A301-145A). These
antibodies were validated by western blot. After the primary antibody
incubation, the array was first rinsed in an HBS bath containing 0.1%
Tween-20 and then de-wetted in an HBS bath. Microarrays were then
incubated for 20min in the dark with 10μg/mL of either Alexa488- or
Alexa647-conjugated secondary antibody (see Supplementary Table 2)
diluted in 180 μL of 2%milk in HBS. The following fluorescently labeled
secondary antibodies were used in our CASCADE experiments, and
were species matched to the primary antibodies described above: Goat
anti-rabbit IgG (H+ L) Highly Cross-absorbed Secondary Antibody,
Alexa Fluor 647 (ThermoFisher, Cat #A32733); Goat anti-mouse IgG
(H + L) Highly Cross-absorbed Secondary Antibody, Alexa Fluor 488
(ThermoFisher, Cat # A11029). Excess antibody was removed by wash-
ing the array twice for 3min in 0.05% Tween-20 in HBS and once for
2min in HBS in Coplin jars as described above. After the washes, the
microarray was de-wetted in an HBS bath. Microarrays were scanned
with a GenePix 4400A scanner and fluorescence was quantified using
GenePix Pro 7.2. Exported fluorescence data were normalized with
MicroArray LINEar Regression83.

CASCADE microarray designs
CASCADE experiments were performed using custom-designed
microarrays (Agilent Technologies Inc, AMADID 086310 and 086772,

4x180K format).Microarrayprobes are all 60 nucleotides (nt) long and
of the format: “GCCTAG” 5-prime flank sequence–- 26-nt variable
sequence–- “CTAG” 3-prime flank sequence–- “GTCTTGATTCGCTT-
GACGCTGCTG” 24-nt common primer (Supplementary Data 8). For
each unique probe sequence (i.e., unique 26-nt variable region) five
replicate probes are included on the microarray with the variable
sequence in each orientation with respect to the glass slide (i.e., 10
probes total per unique variable sequence).

Design 1 (Agilent AMADID 086310): Microarray design for profiling
Ref/Alt impact. This microarray was designed to profile the impact of
NCVs on COF binding by comparing the binding to reference (Ref) and
alternate (Alt) probes. The design included 2956 Ref/Alt paired probe
sets that include: 2555 TFA-BTNCVs, 17 literature-reported driver NCVs,
and 384 background NCVs (Supplementary Data 8). The background
NCVs were selected from those NCVs for which the TFA-BT algorithm
found no predicted binding of any TF. A priori we do not know where
within a TF binding site a NCV will reside, so probe sequences were
designed such that each NCV was represented in three separate DNA
registers inourmicroarray (i.e., NCVcentered ineachDNAprobe, or off-
set by 5 nt in either direction, Supplementary Fig. 3a, b). Using this
design, each Ref/Alt pair (i.e., each NCV assayed) required 60 individual
probes on our array (3 registers x 10 replicates x 2 Ref/Alt-variants).

Design 2 (Agilent AMADID 086310): Microarray design for deter-
mining COF motifs. This microarray was designed to determine COF
recruitment motifs for each NCV loci. The design is based on the
exhaustive mutagenesis approach outlined in Bray & Hook et al.42.
where all possible single-nucleotide variant (SV) probes of a defined
genomic locus are included as probes in the microarray. By profiling
the differential binding of a COF to all SV probes we can directly
determine a motif/logo for that COF and genomic loci as described in
Bray & Hook et al. (details below). The design included probes to
evaluate motifs at 359 NCVs identified as significant by both CASCADE
(differential COF recruitment using Design 1 microarray) and MPRAs
(differential gene expression) (Supplementary Data 9). In our initial
NCV screen using the Design 1 microarray, for each NCV we evaluated
the differential COF binding to probes in the three different NCV
registers (i.e., NCV centered or offset, see above) and two orientations
with respect to the glass slide. For theDesign 2microarray, we selected
the probe register and orientation that gave the largest differential
COF binding in our initial NCV screen, and used this ‘best register’
probe (hereafter referred to as the ‘seed’ sequence) along with all SV
probes covering the 26-nt genomic locus. Furthermore, for the starting
seed sequence we used either the Ref or the Alt probe based on which
had the strongest COF binding in our initial screen. We note that this
specific choice of Ref or Alt as the starting seed probe was generally
consistent across all different COF experiments. Each unique 26-nt
sequence was represented by 5 replicate probes. Using this design,
each NCV loci was characterized using 395 individual probes on our
microarray: (1 seed + 3 variants x 26 positions) x 5 replicates.

CASCADE computational analysis
Image analysis and spatial detrending of the microarray fluorescence
intensities were performed as previously described81,83. Probe fluor-
escence values were transformed to a z-score (as previously
described80) using the fluorescencedistribution of a set of background
probes included on each microarray.

Design 1: Microarray design for profiling Ref/Alt impact. To deter-
mine differential COF binding due to each NCV, probe intensities were
compared between the Ref and Alt probes. For each NCV, differential
binding was assessed independently to all six sequences representing
that NCV (i.e., three NCV registers and two orientations). For each of
the six sequences, the significance of the differential binding was
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assessed using a two-sided Student’s t-test between the 5 replicate
probes for the Ref and Alt alleles. Finally, an aggregate, multiple
hypothesis-corrected p-value for differential binding was determined
using Fisher’s method (sum log p-values) and the six independent p-
values. The magnitude of the differential binding was quantified using
a “ Δz-score” computed as the difference in the mean z-score for the
Ref probes (all registers, orientations, and replicates) and the Alt
probes. Therefore, for eachNCVweassessed themagnitude (Δz-score)
and significance (aggregate p-value) of the differential COF binding.
We annotated NCVs as differentially bound in each experiment if they
met the following criteria: (1) the z-score of Ref or Alt allele > 2.0; (2)
delta z-score > 2.0; (3) aggregate p-value <10-3. NCVs were called dif-
ferentially bound if they met the above criteria in both replicate
CASCADE experiments.

Design 2 (Agilent AMADID 086310): Microarray design for deter-
mining COF motifs. COF motifs were determined by evaluating the
z-scores for the seed and SV probes representing each NCV as pre-
viously described42,80. COF motifs can either be represented as a Δz-
score matrix, which is akin to an energy matrix that evaluates the
change in binding magnitude for each nucleotide variant, or as a posi-
tion probability matrix (PPM) that is based on a probabilistic model
relating base frequencies and binding energies84. We use Δz-score
matrices to directly show of the impact of base identify on binding and
use PPMs to compare against motifs in public databases which almost
exclusively represent motifs as PPMs. Δz-score matrices for a locus are
determined using z-scores from the seed probe (zseed) and three SV
probes at each of the 26 base positions across the locus. The Δz-score
matrix values are based on the z-score differences from the median,
calculated independently for each position (i) along the probe:

4zi,j = zi,j �medianj = A,C,G,T zi,j
� �

ð3Þ

where i indicates the nucleotide position (1 to 26) and j indicates the
nucleotide (A,C,G,T). The median at position i is determined over the
seed sequence and three probes with variant nucleotide at position i.
PPMs are determined by transforming the same z-scores in a different
manner:

PPMi,j =
expðβ*zi,jÞP
jexpðβ*zi,jÞ

ð4Þ

where i indicates the nucleotide position (1 to 26), j indicates the
nucleotide (A,C,G,T), and β is an empirically determined scaling
parameter:

β=4 zseed<0

β =4� zseed
2 0 ≤ zseed ≤6

β = 1 6<zseed

PPMs for each locus were compared against PPMs from JASPAR85

using the TomTom86 algorithm (dist = Euclidean Distance; min_o-
verlap = 6) using the “meme” package87 implemented in R.

Statistical analyzes
Statistical analyzes and figures were generated using GraphPad Prism
(v.9.2) and R stats (v.4.2).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The MPRA and CASCADE data generated in this study have been
deposited in the Gene Expression Omnibus database under accession
code GSE218478 and GSE222436, respectively. The PCAWG data and
motif analyzes used in this study are provided in the Supplementary
Information/Source Data files. The cancer mutation data used in this
study was obtained from PCAWG (https://dcc.icgc.org/pcawg). The TF
motifs used in this studywere obtained fromCIS-BP (http://cisbp.ccbr.
utoronto.ca) and JASPAR (https://jaspar.genereg.net). The list of
prognostic genes was derived from the pathology data from the
Human Protein Atlas version 21.0 (https://www.proteinatlas.org/
about/download). The ChIP-seq data used for the allelic imbalance
analysis was obtained from the ENCODE Project (https://www.
encodeproject.org and Supplementary Data 5). Additional informa-
tion required to reanalyze the data reported in this paper is available
from the lead contacts upon request. Source data are provided with
this paper.

Code availability
Original code for the TFA-BT has been deposited on GitHub (https://
github.com/fuxmanlab/noncoding_drivers and www.github.com/
fuxmanlab/altered_TFBS) and is publicly available. This code is also
deposited in Zenodo (https://doi.org/10.5281/zenodo.7570531)88. Ori-
ginal code for the CASCADE analysis has been deposited on GitHub
(https://github.com/Siggers-Lab/Carrasco-Pro-Hook-et-al.-PBM-
Analysis.git) and is publicly available. Code to analyze theMPRAdata is
available in GitHub: MPRAmatch, MPRAcount (https://github.com/
tewhey-lab/MPRA_oligo_barcode_pipeline) and MPRAmodel (https://
github.com/tewhey-lab/MPRAmodel).
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