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Using networks to measure similarity
between genes: association index selection

Juan I Fuxman Bass!2, Alos Diallo!?, Justin Nelson?, Juan M Soto!-2, Chad L Myers> &

Albertha ] M Walhout!»2

Biological networks can be used to functionally
annotate genes on the basis of interaction-

profile similarities. Metrics known as association
indices can be used to quantify interaction-profile
similarity. We provide an overview of commonly used
association indices, including the Jaccard index and
the Pearson correlation coefficient, and compare
their performance in different types of analyses

of biological networks. We introduce the Guide for
Association Index for Networks (GAIN), a web tool
for calculating and comparing interaction-profile
similarities and defining modules of genes with
similar profiles.

Biological processes are orchestrated through complex
interaction networks. Networks are modeled as graphs
that depict interactions (‘edges’) between biological
entities such as genes, tissues, proteins and metabo-
lites (‘nodes’; see Box 1). If only one type of node is
involved, as in protein-protein’? or genetic interac-
tion networks?, the graph is defined as monopartite.
Bipartite graphs, by contrast, describe interactions
between two different types of nodes (X-type and
Y-type), with edges connecting only nodes of differ-
ent types (Fig. 1a). Bipartite graphs include protein-
DNA interaction networks*~, metabolic networks”-8,
phenotypic networks® and expression networks!0-14,

Networks are powerful tools for gene function
annotation. For instance, the ‘guilt-by-association’
principle postulates that if a node with an unknown
function has an interaction profile similar to that of
a node with a known function, its function may be
similar as well>!5. Additionally, network analysis
can identify modules—neighborhoods compris-
ing nodes with similar interaction profiles that can
point to functional relationships between larger
sets of genes'®!7. Although seemingly intuitive, it is

not trivial to know how to best capture interaction-
profile similarity between nodes, as numerous metrics,
or association indices, can be used, and because each
index can provide different values and rank similarity
between pairs of nodes in a different order. Here,
we provide an overview of commonly used associa-
tion indices. We discuss the differences and similari-
ties between association indices and provide a set
of guidelines and a web tool for their selection for
different applications.

Types of association indices

We focus here on bipartite networks that connect
X-type nodes to Y-type nodes (Fig. 1a). In these
networks, association indices can be used to measure
shared Y-type nodes between two X-type nodes, or vice
versa. An association index can measure interaction-
profile similarity between X-type nodes A and B by
calculating the shared partners (|[N(A) N N(B)|), in
relation to their total number of interactions (‘node
degree’), defined as |[N(A)| and [N(B)|, and the total
number of Y-type nodes in the network (ny) (Fig. 1a).
There are three main types of indices, each of which
uses the variables mentioned above in a different way
(see Box 2).

Similarity indices reflect the proportion of overlap
and consider only the number of shared interactions
between two X-type nodes and the individual degrees
of these nodes, but they do not take the total number
of Y-type nodes in the network into account. There
are many similarity indices, most of which scale
interaction-profile similarity between 0 and 1 (ref. 18)
(Supplementary Table 1). We will focus on four that
are commonly used in genomics and systems biology
(see Box 2). The Jaccard index calculates the pro-
portion of Y-type nodes shared between two X-type
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BOX 1 GLOSSARY OF TERMS

A graph is a pair G = (N, E) comprising a set NV of nodes connected by a set E of edges.
The degree of a node A (|N(A)|) is defined as the number of nodes with which it interacts.

Hubs are nodes with a disproportionately high degree.
A module is a set of highly interconnected nodes.
A monopartite graph contains only one type of node.

A bipartite graph contains two types of nodes (X-type and Y-type nodes), and connections occur only between nodes of a

different type.

An association index is a measure that quantifies interaction-profile similarity.
An association network is a network in which two nodes of the same type (for example, only X-type nodes) are connected by an

edge if their similarity exceeds a selected threshold.

nodes relative to the total number of Y-type nodes connected to
either X-type node. The Simpson index (equal to the meet/min
index!® and similar to the topological overlap coefficient!®) con-
siders the number of shared Y-type nodes relative to the smallest
degree of either X-type node. The geometric index calculates
the square of the number of shared interactions between two
X-type nodes, divided by the product of their individual degrees.
Finally, the cosine index corresponds to the square root of the
geometric index.

a Bipartite network

Y-type nodes

Unlike similarity indices, matching indices, such as the simple
matching coefficient and the Hamann index (Supplementary
Table 1), consider the proportion of shared Y-type nodes as
well as Y-type nodes that are not connected to either of the two
X-type nodes. Because biological networks are sparse, shared
nonpartners can contribute more to the similarity between two
nodes than shared partners. Therefore, matching indices are not
appropriate for the analysis of most biological networks and will
not be discussed further.
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Figure 1 | Measuring interaction-profile similarity between two nodes using association indices. (a) Bipartite graphs connect two types of nodes:

X-type (purple) and Y-type (yellow). The interaction-profile similarity between a pair of X-type nodes (A and B) is determined on the basis of the number
of shared Y-type nodes, the total number of Y-type nodes connected to A and B, and the total number of Y-type nodes in the network. (b) Association
index comparison. For each pair of X-type nodes, the Jaccard, Simpson, geometric, cosine and hypergeometric indices and PCC were calculated on the
basis of their interactions with Y-type nodes. (c) CSI calculation between nodes A and B for a bipartite network involving six X-type nodes (purple)

and seven Y-type nodes (yellow). For each pair of X-type nodes the PCC was calculated (blue, positive values; red, negative values). In the PCC

association network all the edges connected to A or B are highlighted. CSI,g represents the fraction of X-type nodes connected to both A and B,

with PCC < PCCypg — 0.05. The CSI was also calculated between A and C.
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BOX 2 DEFINITIONS OF ASSOCIATION INDICES

The Jaccard index is the proportion of shared nodes between A and B relative to the total number of nodes connected to A or B.

5= [N(A) N N(B) |
[ N(A)UN(B) |

The Simpson index is the proportion of shared nodes relative to the degree of the least-connected node.

SaB =

__ MA@
min(| N(A) |,| N(B) |)

The geometric index corresponds to the product of the proportion of shared nodes between A and B.

6ag = LHAIONB)
EGIRIC]

The cosine index is the geometric mean of the proportions of shared nodes between A and B.

_ [NA)ANE)|
[NA)]-[NGB) |

The Pearson correlation coefficient is the correlation between the interaction profiles of A and B.

[N(A)NN(B)|. ny— | N(A) [ [NGB)|

PCCag =

JNA) . INB)| - (ny=[N(A) ). (ny~ | N(B) ])

The hypergeometric index is the log-transformed probability of having an equal or greater interaction overlap than the one

observed between A and B.

Hag = —log

i =[N(A) A N(B)|

[NA) | (ny—INA)
i ] |N@B) |- i

min(|N(A), N(B)|) [
2

Ny
[NB)|

The connection specificity index (CSI) is defined as the fraction of X-type nodes that have an interaction profile similarity with A
and B that is lower than the interaction profile similarity between A and B itself.

__ #nodesconnected toA or B with PCC >PCCpg —0.05

(SIpg =1

Ny

_ #nodesconnectedtoA and B with PCC < PCCpg —0.05

Statistic-based indices employ probability distributions (such as
chi-square and Fisher’s exact test) to determine the likelihood of
observing a certain overlap between the interaction profiles of two
X-type nodes given their degree and the total number of Y-type
nodes in the network!8 (Supplementary Table 1). We will discuss
two of the most commonly used statistic-based indices.

The Pearson correlation coefficient (PCC) was originally
developed to measure the linear relationship between two con-
tinuous variables, such as protein and mRNA levels. This metric
can also be applied to bipartite networks where interactions are
either present or absent. The PCC provides a value between —1
and 1 that describes how well the interactions overlap. A PCC of 1
indicates a perfect overlap, 0 corresponds to the number of shared
interactions expected by chance and —1 depicts perfect anticorre-
lation. The hypergeometric index calculates the log-transformed

Ny

probability of observing an equal or greater number of shared
nodes by chance and, therefore, measures the significance rather
than the magnitude of the overlap.

Comparing association indices

Different association indices can provide different values of
interaction-profile similarity. We illustrate this using three small
example networks in which two X-type nodes, A and B, share dif-
ferent numbers of Y-type nodes, out of a total of seven (Fig. 1b).
In each example, different indices can provide different values,
ranging from perfect similarity (Simpsonag = 1 in example 1)
to low similarity (hypergeometricyg = 0.146 in example 1).
Further, different indices can rank the interaction-profile simi-
larity between a pair of nodes in different orders. For instance,
according to most indices the profiles of A and B are most similar
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in example 3, but the Simpson index ranks examples 1 and 3 as
equally similar. Finally, even for pairs of nodes that have differ-
ent overlap and/or node degree, an index may output identical
values as it condenses four variables (overlap, degree of A, degree
of Band ny) into a single number. For instance, the Jaccard index
cannot discriminate between examples 1 and 2 (Jaccardp =
0.333), in which the total number of edges is differently
distributed between A and B, whereas the other indices can.

Nonspecific interactions can drive similarity

The indices mentioned above consider the similarity in interact-
ing partners between two X-type nodes but not the interaction
specificity. Two issues need to be considered. First, Y-type hubs
may confer artificially high levels of interaction-profile similarity:
if half of all X-type nodes bind a Y-type hub, this overlap is not
very informative. Second, not all Y-type nodes are independent,
which may also confer exaggerated levels of interaction-profile
similarity. For instance, neurons can be classified into different
categories on the basis of the tissues in which they are located.
Different types of neurons express common genes. Thus, in a
gene-to-tissue network where genes are connected to the tissues
in which they are expressed, neuronal genes may be connected to
many classes of neurons, artificially increasing their similarity.

1172 | VOL.10 NO.12 | DECEMBER 2013 | NATURE METHODS

0 02 04 06 08 1.0
Index value

The connection specificity index (CSI) provides a context-
dependent measure that mitigates the effect of nonspecific
interactions by ranking the significance of similarity between two
X-type nodes according to the specificity of their shared inter-
action partners®. The CSI between two nodes A and B is defined
as the fraction of X-type nodes that have an interaction-profile
similarity with A and B that is lower than the interaction-profile
similarity between A and B themselves (see Box 2). As originally
defined, the CSI employs the PCC as a first-level association
index to rank the similarity between nodes, and then uses a con-
stant of 0.05 to define the lower boundary of interaction-profile
similarity’. When the constant is increased, the CSI provides a
more stringent measure. Other association indices may also be
used for a first-level ranking of interaction-profile similarity.
Figure 1c illustrates an example in which the CSI reduces the
influence of hubs. In this network, A and B interact with three and
one Y-type nodes, respectively, and share one Y-type node, result-
ingina PCCyp = 0.47 (Fig. 1c). A and C also share one interaction
partner and therefore PCC ¢ = 0.47 as well. However, many other
X-type nodes interact with the Y-type node connected to both
A and C, hence this shared interaction is less specific. Applying
CSI to these networks alleviates this problem: when a constant of
0.05 is used, CSIsp = 0.5, whereas CSIxc = 0.17 (Fig. 1c).
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Figure 3 | Using association indices to identify modules in a gene-to-phenotype network. (a) Clustered association
index heat maps for a C. elegans gene-to-phenotype network (top). The association index was calculated for

each pair of genes according to shared phenotypic features and then clustered using hierarchical clustering.

The distribution of index values for gene pairs that belong to the same module (intramodule, red) is

plotted (bottom) against the values of gene pairs that belong to different modules (intermodule, black).

The area under the receiver operating characteristic curve (AUC) measures the separation between the two
distributions. (b) The association networks shown were assembled by linking genes that have a top 10%
phenotypic profile similarity value using the indicated indices. A force-directed layout was generated by
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GAIN: a web tool for association indices and clustering

We developed GAIN (http://csbio.cs.umn.edu/similarity_index/
login.php) (Fig. 2a and Supplementary Methods), which allows
a user to upload an interaction data set and perform several tasks.
First, interactions can be visualized as a heat map (Fig. 2b) or
graph (Fig. 2¢). Second, GAIN allows the user to find modules
by calculating all pairwise values with a user-selected association
index followed by hierarchical clustering and by displaying a heat
map (Fig. 2d) or association network (Fig. 2e). Association net-
works contain one node type connected by an edge only when
their interaction-profile similarity exceeds a user-selected thresh-
old. Finally, GAIN can display a density plot to determine whether
an association index can discriminate the interaction-profile
similarity of a particular set of node pairs selected by the user from
all node pairs (Fig. 2f). For instance, in a gene regulatory network
this can be used to determine whether pairs

of highly homologous transcription factors

Finding network modules

Network modules are groups of nodes with relatively high
interaction-profile similarity and can point to shared biological
function between nodes. To compare how different associa-
tion indices perform in the identification of network modules,
we used two bipartite networks. The first is a subset of a
Caenorhabditis elegans gene-to-phenotype network that con-
nects 52 essential genes to 94 phenotypic features®. We used
genes that belong to four modules manually determined by the
authors of the original paper to benchmark the performance of
the different indices. Association indices were calculated for
each pair of genes according to their shared phenotypic features
and then clustered into heat maps (Fig. 3a). Visual inspection
shows that the Simpson index is least suitable for the identifica-
tion of the four modules, and CSI performs the best. Consistent
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Figure 5 | Predicting gene function. (a) A k-nearest-neighbor (knn) algorithm was used to evaluate how well each index is able to assign genes to
functional classes (F). To determine whether an uncharacterized gene X can be assigned a particular function, a knn score was determined as the average
of the top k association index (a.i.) values between X and genes with that function. The knn values were then calculated for genes that have that
function (blue and green) and for genes that do not (black curves). To assign a function to gene X, these values should be well separated (determined
by calculating the AUC). a illustrates a case in which gene X can be assigned function 1 (F1, blue) but not function 2 (F2, green). The median AUC
determined for all the functional classes was used as a measure of performance of the different association indices to predict gene function. (b) The
median AUC calculated for the four functional classes in the C. elegans gene-to-phenotype network was determined for k values of 1 to 6 (number of
nearest neighbors). (c) The median AUC calculated for the biological process GO slim terms in the yeast protein-DNA interaction network was determined
for k values from 1 to 6.

with this observation, we found that CSI is best able to discrimi-  assigned by manual classification (Fig. 3b). Generally, association
nate between the interaction-profile similarity between nodes  networks obtained with different indices exhibit a large degree
that belong to the same module and that of nodes belonging to  of overlap in the edges included, except for those obtained with
different modules (Fig. 3a). the Simpson index and CSI (Fig. 3¢). Indeed, by determining all

Next, we asked which index performs best to delineate associa-  pairwise association index values for each pair of indices, i.e., by
tion networks for this gene-to-phenotype network. These net-  not limiting to the top 10%, comparisons involving Simpson or
works connect nodes that have an interaction-profile similarity ~ CSI were least correlated (Fig. 4a,b and Supplementary Fig. 1).
above a certain threshold. Therefore, they serve not only to delin-  This analysis of a real network further substantiates the notion
eate modules but also to identify nodes related to more than one  that different indices can result in different values and ranking of
module and nodes that are not related to any module. We used  interaction-profile similarity. Neither the Simpson index nor CSI
the top 10% of the values obtained with each index (Fig. 3b).  is well correlated with any of the other indices, but the conse-
CSI outperforms the other indices, as it (i) better demarcates the  quences in each case are quite different: for Simpson the poor
modules, (ii) leaves only two genes not assigned to any module  correlation results in reduced module demarcation, whereas
and (iii) places only one gene into a module different from that  for CSI it results in precisely the opposite. The denominator in
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(e) Association index values were determined for pairs of promoters in the yeast protein-DNA interaction network. The values for pairs of highly
coexpressed genes (top 1%; red) and other gene pairs (bottom 99%; gray) are plotted.
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Table 1 | Association index performance for different applications

PERSPECTIVE |

Jaccard Simpson Geometric Cosine Hypergeometric PCC CSI
Identifying network modules * * *k *% *x *x .
Predicting gene function > * o *x > - .
Comparing two sets of node pairs® o o o *ox * . *
Determining significance of overlap No No No No Yes No No

Asterisks indicate qualitative strengths, with a greater number indicating greater utility.
2Assessment depends on biological question or objective.

the Simpson index uses only the lower of the two overall node
degrees, which can lead to artificially high levels of interaction-
profile similarity, even for genes belonging to different modules
(Fig. 4¢). In the case of CSI, ranking similarity according to inter-
action specificity results in a higher value for gene pairs with
shared specific phenotypes (C47G2.3 and F57B10.1), and a lower
value for gene pairs with shared common phenotypes (plc-1 and
perm-3) (Fig. 4d).

The second example network contains protein-DNA inter-
actions between 102 yeast transcription factors and 542 pro-
moters?. Association indices were calculated for each pair of
promoters according to their shared transcription factors, and
values were clustered into heat maps (Supplementary Fig. 2a).
The heat maps are visually quite similar, and numerous modules
can be detected. There were no previously benchmarked modules
available. However, because genes with similar functions are fre-
quently bound by the same transcription factor(s), we assessed the
performance of the different indices by analyzing the biological
process Gene Ontology (GO) enrichment in three different
modules (Supplementary Fig. 2b). Two modules were detected
equally well by all association indices (Supplementary Fig. 2c);
however, for the third module significant enrichment (P < 0.001)
for genes involved in the oxidation-reduction process was
detected only by CSI and the Jaccard, geometric and hypergeo-
metric indices (Supplementary Fig. 2c). Thus, association indices
can perform differently in different types of networks and even
within a network.

Predicting function of individual genes

Biologists frequently identify single genes of unknown functions,
for instance in a genetic screen. So far, we have discussed network
modules as a starting point for functional annotation. However,
for analysis of only a single gene, there is no need to first compre-
hensively identify network modules. Moreover, modules are not
always suitable for annotation of the function of every gene, as a
gene may not belong to a clearly defined module and may have
more than one function. An intuitive way to annotate gene func-
tion is to use the guilt-by-association principle, which postulates
that two genes with similar functions have similar interaction
profiles. One can assign functions to genes using a variety of dif-
ferent algorithms. Here, we use a k-nearest-neighbor algorithm
that tests associations between genes and functions (Fig. 5a). An
unknown gene can be assigned to each function F depending on
(i) the top k association index values between that gene and the
gene(s) that are known to have that function, and (ii) the spe-
cificity of the distribution of those values. In the example shown
in Figure 5a, the highest score for the unknown gene (X) with
genes with either known function 1 (F1, blue) or function 2 (F2,
green) is similar (red lines). However, for function 1, the two
distributions are largely separate, whereas for function 2 the two

distributions overlap greatly. Thus, function 1 can be assigned to
gene X with greater confidence than function 2. We assessed which
association index best predicts function using the two networks
described above. Again, CSI was best able to assign genes to
functional classes, and the Simpson index performed the worst
(Fig. 5b,c). This result is consistent with the ability of CSI to
consider interaction specificity.

Integrated networks

The integration of different types of networks enables the com-
parison of pairs of nodes across networks!>20, Questions that
can be answered include (i) whether directly interacting pairs of
nodes in one network also tend to interact in another (Fig. 6a;
note that this involves two monopartite networks), (ii) whether
interacting nodes in one monopartite network have similar inter-
action profiles in a bipartite network (Fig. 6b) and (iii) whether
pairs of nodes with similar interaction profiles in one bipartite
network are also similar in another bipartite network (Fig. 6c).
An example of the first type of question is whether the genes that
encode physically interacting proteins also interact genetically.
An example of the second type of question is whether proteins
that physically interact tend to share phenotypes. Finally, an
example of the third question is whether transcription factors
that regulate a shared set of target genes are expressed in the same
tissues and/or under the same conditions.

To determine whether interacting nodes in one monopartite
network also interact in another network, the overlap between
both sets of interactions can be determined, using association
indices, on the basis of the number of shared edges between both
networks, the number of edges in each network and the total
number of node pairs (Fig. 6a). To determine the magnitude of
similarity, Jaccard and Simpson are most suitable, and the hyper-
geometric index can be used to determine significance. The same
approach can be used to compare interacting node pairs between
modules in one network to those in another. Such ‘cross-network
module preservation’ has been evaluated elsewhere?!.

To integrate a monopartite and a bipartite (Fig. 6b), or two
bipartite, networks (Fig. 6c), the biological question should
inform index selection. We illustrate this with two data sets. The
first is a multiparameter, integrated C. elegans basic helix-loop-
helix (bHLH) network comprising protein-protein interactions
and gene-to-tissue expression patterns!3. Each index revealed
that interacting bPHLH proteins are more often coexpressed than
noninteracting ones (Fig. 6d). However, Simpson outperformed
the other indices (Fig. 6d and Supplementary Fig. 3a). This is
because a few bHLH proteins that bind many partners are broadly
expressed, but each protein’s partners are expressed in only a
subset of tissues. This is best captured by the Simpson index,
as it uses the minimum node degree in the denominator. The
second data set is the yeast protein-DNA interaction network,
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integrated with a microarray coexpression network??. All indices
revealed that highly coexpressed genes have higher protein-DNA
interaction-profile similarity than other gene pairs (Fig. 6e). The
PCC best separated the two categories, and the Simpson index
was least efficient (Supplementary Fig. 3b). The relatively poor
performance of the Simpson index is because it considers the
degree of only the least connected promoter. As a consequence, a
promoter bound by many transcription factors may be regarded
as similar to a promoter bound by few, some of which are shared.
However, differences between transcription factors bound to pro-
moters are also highly meaningful, as these may contribute to
distinct gene-expression profiles.

Conclusions

Different association indices can be used to compare interaction-
profile similarity within and across networks, and different indi-
ces have strengths and weaknesses for different applications
(Table 1). CSI is most suitable for predicting gene function and
identifying modules. However, CSI levels the similarities between
modules, which is a disadvantage in comparing modules. When
the main goal is to compare the similarity between node pairs,
the biological question should drive index selection. For instance,
the Simpson index may be used to avoid penalizing large differ-
ences in node degree. If one wants, conversely, to capture this
difference, other indices are more appropriate. The hypergeo-
metric index should be used with caution to determine the mag-
nitude of similarity between interaction profiles, as it does not
scale linearly with the proportion of overlap. However, only this
index is able to calculate the statistical significance of interaction-
profile overlap.

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper.
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