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SUMMARY

Transcription factors (TFs) regulate gene expression by binding to DNA sequences and modulating transcrip-
tional activity through their effector domains. Despite the central role of effector domains in TF function, there
is a current lack of a comprehensive resource and characterization of effector domains. Here, we provide a
catalog of 924 effector domains across 594 human TFs. Using this catalog, we characterized the amino acid
composition of effector domains, their conservation across species and across the human population, and
their roles in human diseases. Furthermore, we provide a classification system for effector domains that con-
stitutes a valuable resource and a blueprint for future experimental studies of TF effector domain function.

INTRODUCTION

Transcription factors (TFs) play a central role in the regulation of
gene expression and thereby affect diverse biological processes
such as cell differentiation and de-differentiation (Takahashi
et al., 2007; Tapscott et al., 1988), development (Davidson and
Erwin, 2006), and immune regulation (Carrasco Pro et al.,
2018; Santoso et al., 2020). Most TFs contain two main types
of protein domains to accomplish their functions: DNA-binding
domains (DBDs) and effector domains (EDs) (Frankel and Kim,
1991; Lambert et al., 2018; Vaquerizas et al., 2009). DBDs direct
TFs to their target genomic regulatory regions by recognizing
specific DNA sequences. DBDs are well-conserved structural
classes and are often used to classify TFs into families. For
example, the current list of 1,639 human TFs is classified into
25 DBD families, the largest of which are zinc fingers Cys2His2
(ZF-C2H2) and homeodomains (Lambert et al., 2018). Alterna-
tively, EDs can activate or repress target gene expression
through several mechanisms such as interactions with cofac-
tors, enzymes, and mediator, leading to histone modifications,
changes in DNA methylation states, and recruitment of RNA po-
lymerase Il (RNA Pol ll) (Frietze and Farnham, 2011; Reiter et al.,
2017) (Figure 1A). Broadly, we can classify these EDs as activator
domains (ADs), also known as trans-activator domains,
repressor domains (RDs), and bifunctional (Bif) domains (i.e.,
those that can activate or repress gene expression depending
on the cellular and chromatin contexts).

While there are multiple resources and annotations of TF
DBDs, there are currently no comprehensive annotations of TF
EDs. This is because EDs are generally less conserved across
paralogs and orthologs than DBDs and often do not have well-
defined structures, rendering predictions based on sequence
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or structure largely ineffective (Staller et al., 2018). Therefore,
EDs have mostly been identified by deletion experiments, and
their annotation is scattered across the literature.

The transcriptional regulation field has made substantial con-
tributions to our understanding of the molecular mechanisms of
gene expression and the role of EDs in the recruitment of the pre-
initiation complex, chromatin organization, cofactor recruitment,
RNA Pol Il regulation, and DNA methylation (Roeder, 2019).
Given the extensive and important research by thousands of sci-
entists in this field, the goal of this article is not to offer a historical
perspective on these key contributions, but rather to synthesize
the currently available information and provide a novel resource
to obtain a big-picture comparative perspective on TF EDs.

Here, we review >3 decades of literature to manually annotate
924 EDs across 594 human TFs. We use this resource to charac-
terize EDs and their amino acid (aa) composition, sequence
conservation, and roles in human diseases. In addition, we
implement a web server annotating the known EDs, as well as
to predict EDs across paralogs and within TF isoforms. Collec-
tively, our data and analyses provide a novel and important
resource for future studies of TF EDs.

Methods to identify and characterize EDs

The ability of EDs to modulate transcriptional activity has been
mapped and characterized using different experimental ap-
proaches (Figure 1B; Table S1). Most of these approaches
require recruiting either a full-length TF or a TF fragment to a tran-
scriptional control region, followed by quantifying the transcrip-
tional activity of a downstream target gene. Recruitment of the
TF can be achieved using the intrinsic DBD of the TF and a pro-
moter region known to bind the TF (Han et al., 2020; Ma and
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Figure 1. Effector domain (ED) identification, characterization, and function

(A) EDs can affect gene expression by interacting with cofactors and the preinitiation complex (PIC), by modifying histone tails, and by leading to changes in DNA
methylation states. The activity of some EDs can be affected by interactions with ligands or by post-translational modifications.

(B) Experimental approaches to identify and characterize EDs. TF fragments or pool peptide libraries comprising tilling, random, or mutated peptides are fused to
an exogenous DBD (e.g., Gal4, Gen4, LexA, rTetR DBDs). Transcriptional activity is often measured using a reporter gene. In the case of high-throughput peptide
screens, cells with different levels of reporter activity are sorted, and the enrichment for sequences corresponding to each peptide is determined by next-
generation sequencing (NGS). Pull-down experiments are also used to identify interacting cofactors by western blot (WB) or mass spectrometry (MS).

Ptashne, 1987; Roose et al., 1998). The target gene can either be
an endogenous target gene whose expression can be measured
by qRT-PCR, or a reporter gene measured by enzymatic activity
(e.g., luciferase, chloramphenicol acetyltransferase, 3-galactosi-
dase) (Ma and Ptashne, 1987; Meijer et al., 1992; Roose et al.,
1998). These experiments involve protein deletions to identify
the aa sequences that are necessary for activating or repressing
transcription (i.e., if the regions are removed, the transcriptional
effect is totally or partially lost). However, these assays rarely
demonstrate that these sequences, on their own, are sufficient
to elicit their transcriptional effect. To show sufficiency, comple-
mentary reporter assays are used in which TF fragments are
fused to DBDs from heterologous TFs that have well-character-
ized DNA-binding sites, such as the yeast Gal4 and the bacterial
LexA (Braun et al., 1990; Brent and Ptashne, 1985; Hope and
Struhl, 1986). This allows for recruitment of TF fragments of
any size to test their effect on reporter gene expression. More-
over, these experiments are not compromised by effects that de-
letions in the native TF may have on its ability to bind its natural
DNA-binding sites. To avoid mapping regions that affect the
overall function of the TF (i.e., necessary but not sufficient) or re-
gions that are active in a heterologous context but not within the
TF sequence (i.e., sufficient but not necessary), both types of ex-
periments showing necessity and sufficiency are recommended.

Most of the assays listed above are low throughput, in partic-
ular protein deletion experiments, as they require custom-
designed sequences for each TF tested. In addition, studies of
different TFs may require different cell types expressing the
appropriate cofactors and varying experimental conditions
such as different ligands and stimuli (Figure 1A). Recently, exog-
enous DBD or dCas9 fusion experiments have been adapted for
high-throughput transcriptional activity screens using libraries
coding for thousands of peptide sequences (Figure 1B). These
peptide libraries can include fragments of protein-coding genes
(including TFs), comprehensive mutagenesis of selected peptide
sequences to identify key amino acids within the peptides
involved in transcriptional activity, or random peptides to screen
for activating and repressive functions (Alerasool et al., 2021; Ar-

nold et al., 2018; Erijman et al., 2020; Ravarani et al., 2018; Staller
et al., 2018; Tycko et al., 2020). In these experiments, the re-
porter used allows for the separation of cells harboring a tran-
scriptionally active (or repressive) DBD-peptide fusion within a
pool (e.g., GFP reporter using fluorescence-activated cell sort-
ing, a surface marker using magnetic separation), followed by
sequencing of the enriched peptide sequences.

In addition, protein-protein interaction (PPI) studies have pro-
vided indirect evidence of transcriptional regulatory activity by
identifying TF fragments that interact with cofactors or other
proteins that modulate transcription (Figure 1B). For example,
pull-down assays have been used extensively to identify the in-
teractions of EDs with cofactors and chromatin remodeling com-
plexes (Giraud et al., 2002; Neely et al., 1999; Xu et al., 2018).
When integrated with reporter studies, these PPIs can provide
a mechanism for observed transcriptional effects.

Few computational approaches have been developed to pre-
dict TF EDs. This is mainly because there are no comprehensive
databases annotating experimentally determined EDs, because
EDs are poorly conserved between paralogs, and because the
sequence rules for transcriptional activity have not been fully es-
tablished. EDs are thus relatively difficult to predict from aa se-
quences compared to DBDs (Mistry et al., 2021). 9aaTAD is a
predictor based on different experimentally determined 9-mer
ADs; however, this tool is limited to short ADs (Piskacek et al.,
2007). Since sequence alignment proved to be of limited use
to predict ADs, novel machine learning predictors have been
developed. For example, ADpred is a deep learning model that
uses the aa composition and the secondary structure of known
ADs to predict ADs between 9 and 30 amino acids (Erijman
et al., 2020). PADDLE, a deep convolutional neural network
model, uses 53 aa tiles to predict the location of ADs within a
TF sequence, its key residues, and its transactivation strength
(Sanborn et al., 2021). However, most experimentally deter-
mined ADs are longer, as we found from our curation (median
=91 amino acids). Although this could be associated with impre-
cise boundary definition for some ADs, many carefully mapped
ADs are indeed longer, somewhat limiting the applicability of
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(A) Number of TFs per family with annotated EDs classified as TFs-AD (if they only have ADs annotated), TFs-RD (if they only have RDs annotated), and TFs-Bif (if
they have both ADs and RDs or bifunctional domains annotated). Only TF families with >3 annotated TFs are included. The pie chart indicates the number of TFs
in each class. The histogram indicates the amino acid length distribution for ADs (blue) and RDs (red).

(B) Relative position of ADs, RDs, and DBDs within the TF amino acid sequence (from N to C termini). TF families are indicated by the left bars. Within each family,
TFs are sorted based on whether they are classified as TFs-Bif, TFs-RD, or TFs-AD (indicated by the right bars). Within each class, TFs are sorted by the relative

position of the ED in the TF sequence.
See also Figure S1.

current computational predictions. Furthermore, to our knowl-
edge, with the exception of KRAB and POZ/BTB domains, there
are currently no predictors developed for repression domains.
Therefore, there is a need for improved computational ap-
proaches to predict EDs, which will be in part driven by new
large-scale experimental datasets.

A census of human TF EDs

To generate a large-scale resource of experimentally validated
EDs, we searched for ED evidence across the literature for the
1,639 annotated human TFs. We manually curated and extracted
experimental evidence for 924 EDs from 594 TFs (Figure 2A; Ta-
ble S2). Of these, only 94 EDs belonging to 79 TFs were reported
in the Pfam domain database (mostly corresponding to KRAB
and BTB/POZ domains), illustrating the lack of structural classi-
fication for most EDs (Mistry et al., 2021). We implemented a
webtool called TFRegDB (https://tfregdb.bu.edu/tfregdb/),
annotating available information about human TF EDs, including
aa sequence, coordinates in different isoforms, experimental
methods used to determine the EDs, whether they are necessary
or sufficient for transcriptional activity, a confidence score, and
links to supporting evidence. We also implemented a BLAST
search functionality, in which a query sequence can be submit-
ted to detect EDs in TF isoforms or to predict EDs based on aa
sequence similarity.
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We annotated EDs in all major families of TFs, including ZF-
C2H2 (170 TFs), homeodomains (68 TFs), and bHLHs (62 TFs)
(Figure 2A). Of the 594 TFs in our database, 40% have >2 EDs
annotated (Table S2). Based on the ED activity, TFs can be clas-
sified into 3 groups: those that contain only ADs (269 “TFs-AD”),
those that have only RDs (210 “TFs-RD”), and those with both
ED types (115 “TFs-Bif’). As expected, most ZF-C2H2 are
TFs-RD, as many of these TFs contain the well-characterized
KRAB and BTB/POZ domains involved in transcriptional repres-
sion (Collins et al., 2001). Conversely, most TFs in the basic helix-
loop-helix (bHLH), nuclear receptor, and homeodomain families
are classified as TFs-AD (Figures 2A and S1A). However, many of
these TFs, such as nuclear receptors, may switch from repres-
sion to activation upon interaction with ligands, while the activ-
ities of others are affected by post-translational modifications.
The classification into TFs-AD, TFs-RD, and TFs-Bif is solely
based on reported ED activity in the conditions tested. There-
fore, many of these TFs could be bifunctional in other conditions,
or if other aa regions of the TF are considered.

Reported ED sizes range from 4 to 1,248 amino acids, with a
median of 91 amino acids (Figure 2A). Although some of these
differences are likely due to varying mechanisms of action, in
many cases size differences likely arise from variation in the
stringency of the deletion experiments used to identify the
EDs. Overall, we found that 30% of the EDs were located at
the N terminus, 28% at the C terminus, and 42% in internal
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Figure 3. Sequence features of EDs

For each activation domain (A) and repression domain (B), the charge density
(charge/amino acid length), hydrophobicity, disorder (determined using
AlphaFold), and phosphorylation density (number of phosphorylation events/
amino acid length) are indicated.

See also Figures S2 and S3.

regions within the TF aa sequence (Figure 2B). However, the
positioning of EDs differs among TF families (Figures 2B and
S1B). Tolllustrate, repressor domains in ZF-C2H2 predominantly
reside at the N termini, while activation domains in bZIP and
HMG/Sox families mainly reside at the N and C termini, respec-
tively. This suggests that alternative splicing, transcription starts,
and polyadenylation sites may differentially affect ADs and RDs
from different TF families.

aa composition of EDs

It has been broadly determined that DBDs are enriched in basic
amino acids that increase TF affinity for the negatively charged
DNA (Lambert et al., 2019), but less is known about the aa
composition of EDs from different TF families. Since Paul Sigler
proposed in 1988 the acid blob and negative model, positing that
acidic ADs interact with RNA polymerase electrostatically (Si-
gler, 1988), significant progress has been made in characterizing
the aa composition of the ADs of some TFs, as well as deter-
mining the rules for transcriptional activity (Erijman et al., 2020;
Sanborn et al., 2021). Seminal studies on yeast TFs reported
that ADs are acidic, disordered, and hydrophobic (Drysdale
et al., 1995; Hope and Struhl, 1986; Ravarani et al., 2018; Staller
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et al., 2018). However, predictions suggest that ADs of human
TFs are not as highly enriched in acidic amino acids as yeast
ADs (Erijman et al., 2020). For example, HOXA13 and ONECUT1
have basic ADs enriched in lysine/arginine and histidine, respec-
tively (Table S2), consistent with the identification of basic ADs in
high-throughput screens (Arnold et al., 2018). Furthermore,
although acidity may be important for some human ADs, acidity
is not sufficient to predict AD function, as appropriate levels of
hydrophobicity and disorder are also required (Staller et al.,
2018; Tycko et al., 2020). A current model, known as the expo-
sure model, indicates that acidic residues that surround hydro-
phobic motifs are necessary to repel one another, promoting
interaction between exposed hydrophobic residues with posi-
tively charged cofactors (Ferreira et al., 2005; Hermann et al.,
2001; Staller et al., 2018; Warfield et al., 2014). These contacts
between hydrophobic residues may mediate high-affinity PPIs
via the hydrophobic effect (Levy and Onuchic, 2006). This model
was initially proposed based on ADs from yeast TFs, and
recently supported by mutational studies in five human TFs (Stal-
ler et al., 2018; Staller et al., 2021). Whether these models extend
to other human ADs and RDs remains to be determined.

To establish whether the reported sequence characteristics
are present in most of the annotated EDs, we evaluated the acid-
ity, hydrophobicity, and disorder of ADs and RDs of TFs from
different families. We confirmed that ADs and RDs are more
acidic than DBDs and found that globally, ADs are statistically
more acidic than RDs (p < 2.2 x 1076, Wilcoxon test) (Figures
3A and 3B). Interestingly, not all TF families show the same level
of acidity in their EDs, which could be partially driven by
sequence homology between paralogs. For example, homeodo-
main ADs are less acidic than ADs from other families, while RDs
in ZF-C2H2 are the most acidic among the RDs. Furthermore,
there are marked differences even within families (e.g., the
HES1-7 bHLH subfamily has more basic RDs than other bHLHs)
(Figure 3B). We also found that both ADs and RDs are more hy-
drophobic than DBDs (Figures 3A and 3B). Although no specific
hydrophobic enrichment was observed for any TF family, in
bHLH, the RDs of the HES1-7 subfamily are more hydrophobic
than RDs from other families. Most TF EDs are highly acidic
and hydrophobic; however, there are some TFs whose EDs are
basic and highly hydrophobic (HES TF subfamily) or acidic but
lowly hydrophobic (e.g., HOXB7, HMGA1).

Several studies of individual TFs have shown that EDs are en-
riched in disordered regions (Liu et al., 2006; Oldfield and
Dunker, 2014). Disordered regions have been associated with
the occurrence of PPls, as their flexibility allows disordered re-
gions to bind multiple structurally diverse protein partners (Old-
field and Dunker, 2014). This disorder allows EDs to assume
different conformations when bound to cofactors, facilitating
the dynamic exposure of hydrophobic motifs (Dyson and Wright,
2016; Staby et al., 2017; Warfield et al., 2014). For example,
the disordered ADs of TP53, HIF1A, REL, STAT, and other TFs
interact with well-structured domains of coactivators, such as
CREBBP and EP300 (Dyson and Wright, 2016). Using AlphaFold
(Jumper et al., 2021), we found that disorder is a property shared
by both ADs and RDs (Figures 3A and 3B). ADs are significantly
more disordered than RDs (p = 1.9 x 10~"", Wilcoxon test), and
both are more disordered than DBD (p < 2.2 x 107'¢, Wilcoxon
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test) (Figures 3A and 3B). This disorder in EDs is a shared feature
across all major TF families. Nevertheless, we observed a large
variability within TF families, with some EDs being 100% disor-
dered (e.g., the ADs of SP1 and SP3), while others are highly or-
dered (e.g., the RDs of MXI1 and MNT, which are alpha helixes).

Short linear motifs (SliMs), which are involved in PPIs and are
generally enriched in hydrophobic amino acids, could be more
important than overall high levels of hydrophobicity (Tompa
et al., 2014). Many examples of SliMs have been reported in
non-human EDs, but few cases have been studied in human
EDs (Dinkel et al., 2014). In general, it has been shown that disor-
dered structures facilitate the interaction mediated by these
SliMs (Staller et al., 2018), but more in-depth studies are needed
to determine their role across TF families.

In addition to general charge, hydrophobicity, and disorder
features, many EDs, ADs in particular, have been shown to
display aa compositional bias (Figure S2A). For example,
many ADs across TF families are enriched in proline, serine,
glutamine, glycine, and alanine, as has been previously
described (Gerber et al., 1994; Husberg et al., 2001; Meijer
et al., 1992; Paulsen et al., 1992; Pei and Shih, 1991; Raney
et al., 1991). Although there is also a compositional bias for
some RDs, in particular those enriched in proline and serine,
these are less frequent than for ADs (Figure S2B). These en-
riched amino acids are generally present in the EDs of TFs
from many different families.

Post-translational modifications (PTMs) are known to regulate
TF functions by affecting PPIs, cellular localization, and ulti-
mately, their regulatory activity. Furthermore, the dysregulation
of TF PTMs has been associated with several pathological condi-
tions (Filtz et al., 2014; Qian et al., 2020; Tootle and Rebay, 2005).
In particular, phosphorylation is known to play a significant role in
the activation of many TFs and their interaction with cofactors
and other protein complexes (Filtz et al., 2014). Phosphorylation
introduces negative charges, thus changing charge and solubility
properties of EDs. As negative charges spaced between hydro-
phobic residues help keep domains exposed to solvent, phos-
phorylation may act as a switch changing the ability of ADs and
RDs to interact with other proteins and cofactors. This is the
case of IRF5 and IRF3, whose phosphorylation stimulates dimer-
ization and interaction with the coactivators CREBBP/EP300
(Chen et al., 2008), while the phosphorylation of ELK1 promotes
mediator recruitment to promoter sequences (Cantin et al.,
2003). Similarly, phosphorylationin the ADs of TP53 was reported
to increase the binding to different domains of EP300 and reduce
binding to the negative regulator Mdm2 (Teufel et al., 2009). Since
most of these studies were performed on specific TFs or func-
tional domains, we used PhosphoSitePlus (Hornbeck et al.,
2019), a curated phosphorylation site database, to analyze the
frequency of phosphorylation events in EDs and DBDs. Across
most major TF families, we found that EDs are more highly
phosphorylated than DBDs (Figures 3A and 3B), even when
normalizing by the frequency of serines, threonines, and tyro-
sines (Figures S2C and S2D). Our analysis suggests that 21%
of EDs may be regulated by phosphorylation. This is likely an un-
derestimate, as some EDs may be phosphorylated in conditions
not yet tested. Except for a few cases, the overall role of other
PTMs in ED regulation remains to be determined.
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Role of EDs in liquid-liquid phase separation

Recent evidence suggests that TF EDs contribute to gene regu-
lation by facilitating liquid-liquid phase separation (LLPS), during
which chromatin-bound TFs, co-regulators, and other transcrip-
tion machinery form dynamic condensates within the nucleus
(Boija et al., 2018; Hnisz et al., 2017; Sabari et al., 2018; Shrinivas
et al., 2019). Forming these distinct transcription “factories” is
thought to enhance transcriptional efficiency by increasing the
effective concentration of required proteins within the crowded
milieu of the nucleus. LLPS can be driven by two main types of
interactions: (1) specific interactions between folded molecular
domains or between folded and unfolded domains, or (2) non-
specific interactions between intrinsically disordered low-
complexity domains (LCDs) (Chiesa et al., 2020). As many TF
EDs contain LCDs, it is hypothesized that the regulatory func-
tions of these EDs depend on their ability to participate in
LLPS by forming LCD-LCD interactions with co-regulators. Boija
et al. (2018) have shown that the TFs OCT4, GCN4, and estrogen
receptor form phase-separated condensates with the co-regula-
tory protein Mediator and that the processes of LLPS and tran-
scriptional activation by these TFs require the same key AD
residues.

It is important to note that while Boija et al. (2018) showed
that LLPS induction by OCT4, GCN4, and estrogen receptor
requires activation domain residues, others have shown that
LCDs are not required for all LLPS events involving TFs
(Chiesa et al., 2020). Li et al. (2020) showed that the DBD of
mouse TF Sox2, and not the LCDs, are required for the incor-
poration of Sox2 and coactivator Brd4 into transcriptional
clusters, suggesting spatial clustering of cis-regulatory ele-
ments. In addition, it has yet to be shown whether transcrip-
tional activation or repression involving EDs requires the
formation of liquid droplets. Chong et al. (2018) observed
that while TF overexpression resulted in LLPS, expression at
physiological concentrations resulted in the formation of
LCD-LCD interaction-dependent transcriptionally active pro-
tein “hubs” without observable phase separation. This sug-
gests that TF EDs can exert their transcriptional regulatory
functions by forming transcription centers without the require-
ment for LLPS. However, given that EDs and LCDs are not
synonymous, more work is required to fully understand how
activation and repression domains of TFs exert their functions
and the involvement of LLPS.

To evaluate whether ADs and RDs are associated with a pro-
pensity for phase separation, we compared the LLPS score
between TFs classes using two different phase separation pre-
dictors (van Mierlo et al., 2021; Vernon et al., 2018). We found
that TFs-AD and TFs-Bif have higher LLPS scores and proba-
bilities than TFs-RD (Figures S3A and S3B), suggesting that
ADs may play an important role in the LLPS. Moreover, we
observed that 15.8% of ADs contain aa contexts predicted to
promote LLPS (Vernon et al., 2018), versus 5.5% for RDs and
1.5% for DBDs (Figure S3C). ADs with LLPS-promoting aa con-
texts were found in TFs well known for promoting the formation
of phase-separated condensates (e.g., SOX2, POUS5F1,
NANOG). Although domains without effector function can also
be involved in LLPS, our results suggest that many ADs likely
promote LLPS.
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Figure 4. EDs affected in TF proteoforms
(A) Schematic of different proteoforms with ED
affected, DBD affected, or with both domains
affected or unaffected. Purple rectangles indicate
ED coding exons; yellow rectangles indicate DBD
coding exons; purple and yellow ovals indicate the
ED and DBD, respectively.

(B) Fraction of proteoforms with ED, DBD, or both
domains affected. TFs are binned based on the
number of alternative proteoforms.
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EDs are preferentially affected in TF proteoforms
TF proteoforms produced by alternative promoters, splicing, and
polyadenylation can differ in both DNA binding and effector ac-
tivity, potentially leading to variation in gene regulatory networks
across tissues or pathological conditions (Figure 4A) (Epstein
et al., 1994; Foulkes et al., 1991; Kozmik et al., 1993; Lopez,
1995; Venkatanarayan et al., 2015). For example, in silico studies
found that alternative splicing in murine TFs preferentially affects
DBDs (Taneri et al., 2004). In regard to EDs, experimental studies
on individual TFs found that different proteoforms of mouse
Pou2f2 (Stoykova et al., 1992), human PAX8 (Kozmik et al.,
1993), and human RUNX1 (Tanaka et al., 1997) have reduced
transcriptional activity due to AD loss. Beyond individual exam-
ples, how EDs are affected in different TF proteoforms is not
currently known on a TF-wide scale.

To gain more insight into how EDs and DBDs are affected in
different TF proteoforms, we used a curated TF proteoform data-
base derived from GENCODE version 30 (Frankish et al., 2019).
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forms where the ED (left) or the DBD (right) are
affected versus the total number of proteoforms of
a TF. The size of the circles indicates the number
of TFs. Red circles indicate TFs with >50% of
proteoforms with affected domain.

(D) Proportion of EDs and DBDs where the do-

#of TFs mains are intact, have indels, or are deleted across
. }0 proteofoms for each TF family.

®s0 See also Figure S4.
@0

We considered a TF proteoform to be
affected if its functional domain (either
DBD or ED) was fully deleted, had trunca-
tions, or had insertions/deletions (indels).
We found that EDs were affected in a
higher proportion of proteoforms than
DBDs, regardless of the number of pro-
teoforms per TF (Figure 4B) and regard-
less of domain length (Figure S4). Among
the TFs with >2 proteoforms, there were
only 42 (10.8%) TFs with affected DBDs
in most of their proteoforms, while for
EDs, this was the case for 103 TFs
(26.6%) (p = 1.9 x 10~8 by proportion
comparison test) (Figure 4C). This sug-
gests that transcriptional activity is more
frequently affected across proteoforms
than DNA binding. EDs were more
affected by indels, truncations, and full
domain deletions than DBDs (p = 7.7 X
1078, Kolmogorov-Smirnov test) across
most major TF families, except for Forkhead and ZF-C2H2
(Figure 4D). In the case of ZF-C2H2, this could be related to
the loss of individual ZFs in multiple proteoforms. Interestingly,
the EDs of the Forkhead family were the least affected by indels
or deletions, while EDs of bZIP and HMG/Sox TFs were the most
affected (Figure 4D). We detected widespread variability in EDs
that may contribute to differences in transcriptional activities
between proteoforms as shown in multiple examples in the
literature. Alternatively, these results may derive from a lower
impact of deletions and truncations in EDs on overall transcrip-
tional activity.

Evolutionary and population-wide divergence of EDs

While DBDs are highly conserved across multiple species and TF
families, anecdotal examples have suggested that EDs are lowly
conserved (Staller et al., 2018). To evaluate ED conservation in
our resource, we aligned human EDs across TF orthologs in 27
vertebrate species and found a lower aa sequence conservation
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See also Figure S5.

compared to DBDs across all families (Figure 5A). As expected,
both DBDs and EDs are less conserved as the divergence time
increases; however, ED conservation diminished more drasti-
cally (Figure S5). Although this low conservation can be partially
explained by ED boundaries being less well determined than
DBDs (e.g., we observed that short EDs are more conserved
than long EDs), it is also likely that EDs are more plastic than
DBDs. It has been reported that EDs can evolve rapidly, confer-
ring greater evolutionary, structural, and functional plasticity on
the interactome (Sanborn et al., 2021; Tompa et al., 2014;
Wang et al., 2012).
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Previous studies reported that the DBDs of most human TFs
are depleted of common genetic variation (Barrera et al.,
2016), likely because small changes in DBDs can lead to marked
changes in affinity or specificity that could have detrimental ef-
fects. Mutagenesis studies in a few TFs have suggested that
ADs more readily tolerate aa substitutions than DBDs (Ravarani
etal., 2018; Sainz et al., 1997; Staller et al., 2018). To explore the
presence of common variants in EDs, we used the gnomAD
database (Karczewski et al., 2020) to compare the proportion
of missense variants within EDs and DBDs for each TF. In gen-
eral, we observed a higher proportion of missense variants in
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EDs (both ADs and RDs) than in DBDs (12.3 variants/100 nt
versus 8.4 variants/100 nt, p < 2.2 x 107'® by Wilcoxon test)
(Figure 5B). In particular, we found 272 TFs with a significantly
higher proportion of variants in EDs than in DBDs, while 30 TFs
had a significantly higher proportion of variants in DBDs than in
EDs (Figure 5C). This higher proportion of variants in EDs was
not dependent on minor allele frequencies and was not observed
for synonymous variants (not shown). We observed similar re-
sults when analyzing genetic variants from the 1000 Genomes
Project (Auton et al., 2015). These results suggest that there is
a stronger negative selection for mutations in DBDs than in
EDs. Among the TFs whose EDs are more tolerable to mutations,
DUX4 and ZNF595 showed the greatest proportion of missense
variants in their AD and RD (58.6% and 37.9% of missense var-
iants, respectively). Although most EDs are found to tolerate
missense variants, there are several highly conserved EDs. For
example, RARB and RBPJ showed the lowest proportion of
missense variants in their AD and RD, respectively (1.9 vari-
ants/100 nt and 3.4 variants/100 nt), although their DBDs are
highly mutated.

Mutations in EDs and association with disease

Mutations in TF EDs have long been associated with many ge-
netic diseases and cancers (Bradner et al., 2017). While muta-
tions in DBDs can alter the targets of a TF by modifying its
DNA-binding affinity and specificity (Barrera et al., 2016; Sahni
et al., 2015), mutations in EDs can alter the ability of a TF to acti-
vate or repress gene expression by affecting its interactions with
cofactors, mediator, or chromatin-modifying enzymes (Frietze
and Farnham, 2011; Lambert et al., 2018). However, the extent
to which mutations affect EDs has not been comprehensively
determined.

To determine the prevalence of germline mutations associated
with disease within EDs, we considered pathogenic and likely
pathogenic mutations from the ClinVar database (Landrum
et al., 2020). We found disease-associated variants both in
EDs and DBDs, although DBDs were preferentially mutated in
disease (Figure 5D). We found 44 TFs significantly enriched in
DBD mutations (q < 0.1, Fisher’s exact test) and only 2 TFs
(SMAD3 and SMAD4) enriched in ED mutations (Figure 5E).
This suggests either that fewer mutations in EDs are pathogenic
or that multiple mutations may be concurrently needed to pro-
duce a phenotype, which is consistent with the high tolerance
for the variants observed in EDs in the human population (Figures
5B and 5C).

Mutations in DBDs and EDs of different TFs (e.g., MYC, TP53,
ESR1) have been identified or predicted as cancer drivers (ICGC/
TCGA Pan-Cancer Analysis of Whole Genomes Consortium,
2020; Martinez-Jiménez et al., 2020). However, the prevalence
of these ED mutations in relation to DBD mutations has not
been comprehensively determined. By exploring the COSMIC
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database (Tate et al., 2019), we found that the proportion of can-
cer-associated somatic mutations in EDs is lower than in DBDs
(p < 2.2 x 1078, by Wilcoxon test) (Figure 5F). We found 25
and 147 TFs with statistically enriched somatic mutations in
EDs and DBDs, respectively (Figure 5G). However, many EDs
have a density of somatic mutations comparable to or higher
than that of many DBDs (Figure 5F). For example, the EDs of
MYC, SMAD4, SMAD3, AR, and SIM1 are enriched in cancer-
associated mutations. Interestingly, we identified 12 TFs for
which mutations in their respective EDs and DBDs are associ-
ated with different types of cancer (q < 0.1, by Fisher’s exact
test) (Figure 5H). For example, somatic mutations in the AD of
MYC are preferentially associated with hematopoietic and
lymphoid cancers, whereas mutations in the DBD of MYC are
associated with many different cancer types such as hematopoi-
etic, lymphoid, large intestine, and stomach. Similarly, while
mutations in the DBD of FOXP3 are enriched in large intestine
cancer, mutations in its RD are associated with liver cancers.
This suggests that, at least for some TFs, mutations in different
functional domains can lead to different diseases (Figure 5I).
These results show that EDs are more tolerable to common
genetic variation and that they are less frequently associated
with disease mutations than DBDs. Nevertheless, there are still
numerous examples of disease-associated mutations in EDs.

Classification of EDs

EDs have traditionally been identified based on regulatory activ-
ity (activation versus repression), biophysical features (e.g.,
charge, hydrophobicity, disorder), the enrichment of certain
amino acids (e.g., proline, serine, glutamine), and sequence con-
servation. To provide a functional classification of EDs, we lever-
aged these features to calculate pairwise similarities between
EDs (see Data S1), which we then used to identify clusters of
EDs with similar features. After an initial clustering into 63 clus-
ters, we retained 20 containing at least 10 EDs, which comprise
77% of the EDs we annotated (Figure 6; Table S3).

We identified 10 clusters of ADs and 10 clusters of RDs
(Figure 6). These clusters differ in the biophysical features and
the enrichment of certain amino acids within their sequences.
For example, clusters 15 and 18 comprise basic RDs, enriched
in arginine residues, whereas cluster 4 comprises mildly acidic
and disordered ADs enriched in serine and proline residues
(Figure 6). Some clusters are enriched in TFs from certain fam-
ilies, such as clusters 5 (nuclear receptor), 6 (bZIP), 8 (nuclear
receptor), 13 (ZF-C2H2), 17 (ZF-C2H2), 18 (ZF-C2H2), 19 (home-
odomain), and 20 (ZF-C2H2). However, many clusters contain
EDs from different TF families without a clear TF family enrich-
ment, suggesting that the ED classification does not directly
match TF classifications based on DBDs. This is consistent
with the high variability in ED regulatory activity, localization
within the TF aa sequence, biophysical features observed even

Figure 6. Classification of EDs

EDs were classified into 20 clusters based on biophysical features, amino acid enrichment, and sequence similarity. The number of EDs per cluster is indicated in
shades of orange. The charge density, hydrophobicity, and disorder were determined as in Figure 2. The length in amino acids is indicated in shades of red. The
fractions of EDs per cluster enriched in each amino acid, TF family, or interacting with a cofactor are indicated in shades of gray. Cofactors interacting with at least

20% of TFs in at least 1 cluster are shown.
See also Figure S6.
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within TF families (Figures 2 and 3), and the modular organization
of TF protein domains.

Next, we evaluated whether EDs from different clusters prefer-
entially interacted with specific cofactors, and thus may share
mechanisms of action. Although interactions between EDs and
cofactors have not been comprehensively determined, we lever-
aged PPIs from BioGRID, HuRlI, and Lit-BM (Luck et al., 2020;
Oughtred et al., 2021; Rolland et al., 2014) between cofactors
and the TFs containing the EDs. As expected, some coactivator
hubs such as CREBBP, EP300, and RB1, as well as general TFs
such as TAF1 and TAF2, preferentially interact with AD-contain-
ing clusters, while co-repressor hubs such as RNF2 and SIN3A
preferentially interact with RD-containing clusters (Figures 6
and S6). Other cofactors are more specific to certain ED clusters.
For example, mediator complex subunits and nuclear receptor
coactivators preferentially interact with clusters 5 and 8, which
are enriched in nuclear receptors (Figure 6). Similarly, co-
repressor TRIM28 interacts with TFs from clusters 13 and 20,
which are highly enriched in KRAB domain-containing ZF-
C2H2, as has been previously reported (Friedman et al., 1996),
whereas heterochromatin protein CBX5 preferentially interacts
with TFs from cluster 20 (Figure 6). Several cofactors are shared
between activation and repression domain clusters (e.g., HR,
SF1, HDACH1) (Figures 6 and S6). This may be because several
EDs can interact with both coactivators and co-repressors,
which modulate transcriptional activity under different condi-
tions. However, some of these cases may be related to the
fact that PPIs are considered at the whole-protein level and
115 TFs contain both activation and repression domains.

Perspectives and future directions

Most studies of EDs have been conducted on individual TFs,
showing that EDs are generally acidic, disordered, and hydro-
phobic. However, many EDs are not defined by these general
rules, making it difficult to predict, identify, and classify EDs
and elucidate their functions. Recently, high-throughput studies
have been used to identify EDs by tiling through protein se-
quences genome-wide and to determine the aa features respon-
sible for transcriptional activity. However, EDs that belong to
different clusters and that interact with different cofactors may
be governed by different sequence features, without a one-
rule-fits-all. Furthermore, since ED activity may differ between
cell types or may be influenced by ligands and PTMs, many
EDs cannot be determined or characterized in single screens.
Although our resource is the most comprehensive to date, this
only represents ~35% of all human TFs. Further studies, using
high-throughput approaches in different cell types and condi-
tions, are needed to identify and characterize EDs for the remain-
ing ~1,000 human TFs. It is unclear how many of these TFs will
contain EDs, as several TFs are known to lack EDs and affect
transcriptional activity through dimerization or interactions with
other TFs.

TFs often have more than one ED. In most cases, how they
functionally interact with one another, cofactors, or the mediator
complex remain to be determined. Most PPIs between TFs and
cofactors have been determined for full-length TFs, rather than
EDs, limiting our understanding of the molecular mechanisms
by which individual or sets of EDs in a TF function. Systematic
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interaction mapping assays such as yeast two-hybrid, proximity
ligation, and affinity purification followed by mass spectrometry
are needed to identify cofactor-ED interactions to increase our
understanding of the mechanisms of action of EDs. This,
coupled with high-density mutational screens and structure-
based modeling, will also provide insights into the molecular
consequences of disease mutations in EDs.

SUPPLEMENTAL INFORMATION
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Literature curation of effector domains

For each of the 1,639 human TFs reported in Lambert et al (Lambert et al., 2018), publications
reporting effector domains were identified by searching in PubMed for the TF name in combination
with at least one key word associated with the effector domain function (“activation”,
“transactivation”, “repression”) or a functional assay (“luciferase”, “Gal4”, “LexA”, “reporter”). Only
effector domains tested individually (low-throughput experiments) were considered in our
annotation, while domains determined in high-throughput pooled screens were excluded. This is
to reduce the impact of false positive predictions from high-throughput screens and because these

screens evaluate peptides of defined lengths in single cell types/conditions which may not match

the ones where particular effector domains are functionally active.

The amino acid location of the effector domain was obtained by analyzing the text and
figures of the manuscripts from protein deletion or effector domain-DBD fusion experiments. The
full length of the TF isoform used in the experiments, or the reported amino acid sequence of the
domain, were used to match an isoform reported in UniProt (UniProt Consortium, 2021). The
sequence and amino acid location of the domain was then obtained from the corresponding
UniProt isoform. In cases where experiments were performed using the TF from another
vertebrate species, the amino acid sequence reported (or inferred from amino acid location) was
aligned to the human sequence to extract the corresponding amino acid sequence and location
in a human isoform of the TF. For each effector domain, we annotated the regulatory activity
(activation, repression, or bifunctional), the amino acid sequence and location in a UniProt
isoform, the assay used to identify the domain, the species in which the domain was identified,
whether the effector domain was necessary and/or sufficient, the level of activity, and the PubMed

ID. To reduce the chances of missing effector domains, we complemented the PubMed search



by searching in Google images and in reviews for images containing effector domain locations

within each TF, followed by PubMed searches for experimental evidence.

We also annotated a confidence score as high (58%), moderate (30%), or low (12%).
Highly confident annotations correspond to effector domains that are sufficient with high/moderate
transcriptional activity. Moderately confident annotations correspond effector domains that are
sufficient with low activity, or necessary with high/moderate activity. Low confident annotations
correspond to necessary effector domains with low activity, or cases where no experimental
evidence is provided. This general classification was in some cases modified based on additional
evidence (e.g., interactions with cofactors) or if the sequence identity of the domain tested was

not high compared to the human effector domain sequence.

Localization of TF effector domains

To determine the location of domains within the amino acid sequence of each TF (Figure 2B),
we calculated the relative position of each domain (activation domains - ADs, repression domains
- RDs, and DNA binding domains - DBDs) in each TF where 0 corresponds to the N-terminus and
100 to the C-terminus. To do this, for each TF we calculated a normalization factor as their
respective length in amino acids divided by 100. Then, to obtain the relative position of each
domain, the N-terminal and C-terminal positions of each domain were divided by their respective

normalization factor.

To show this graphically (Figure 2B), TFs were arranged in descending order by TF
families based on the number of TFs within each family. We only showed TF families with more
than 20 TFs in our resource while the remaining TFs were considered as “Others”. Then, in each

TF family, TFs were ordered as follows: TFs with only ADs, TFs with only RD, TFs with ADs and



RDs. Finally, inside each subgroup, TFs were ordered based on the first appearance of an effector
domain. Each TF was represented as a horizontal line where AD, RD, DBD and the rest of the
protein was colored with blue, red, yellow, and grey, respectively. Similarly, we showed the un-

normalized sequence and domain positions, centered in the DBDs (Supplementary Figure S1B).

Additionally, in each TF family, effector domains were classified based on their relative
location within the TFs. Effector domains whose normalized start position was less than or equal
to 3 were considered N-terminal, while those with normalized end position greater than or equal

to 97 were considered C-terminal. Other cases were considered as internal.

Characterization and amino acid composition of effector domains

The TFs families were obtained from The Human Transcription Factors database

(http://humantfs.ccbr.utoronto.ca/) and were used to annotate TFs with effector domains in major

families (Lambert et al., 2018). To determine whether effector domains were previously annotated
in Pfam (Finn et al., 2016), we downloaded the Pfam database and considered effector domains
that: 1) were longer than 10 amino acids, and 2) displayed at least 90% of the effector domain

overlapping with a domain annotated in Pfam.

DBD amino acid sequences and coordinates were obtained from CisBP2.0 (Lambert et
al., 2019). Disorder, hydrophobicity, charge, and proportion of phosphorylations were calculated
for ADs, RDs, and DBDs. Bifunctional domains were excluded from these analyses as only 11
domains are annotated in our database. For TFs with more than one effector domain, the
properties were calculated for each domain individually. In the case of multiple DBDs, as in ZF-

C2H2 TFs, we concatenated all DBDs into one DBD.



The disorder of effector domains and DBDs was calculated using the AlphaFold Database
(Jumper et al., 2021). First, we determined the disordered regions for each TF based on the per-
residue confidence score (pLDDT) using the TF .cif files. Regions with two or more amino acids
with scores lower than 50 were considered as disordered regions. Then, for each domain (effector
domain and DBD), we calculated the proportion of disordered amino acids as the fraction of amino

acids in the domain belonging to a disordered region.

The hydrophobicity score was obtained as the proportion of hydrophobic amino acids (F,
I,L, M, W, A Y, P) relative to the domain length. The charge was calculated using the Localcider

Python package (http://pappulab.github.io/localCIDER/) (Ginell and Holehouse, 2020).

Phosphorylation sites were downloaded from PhosphoSitePlus

(https://www.phosphosite.org/staticDownloads) (Hornbeck et al., 2019) and the proportion of

phosphorylation was calculated as the number of phosphorylation sites in each domain divided
by their length in amino acids. We considered only phosphorylation events reported with at least
5 references in the PhosphoSitePlus database. A Wilcoxon-test was performed to compare

charge, disorder, and hydrophobicity between effector domains (either ADs and RDs) and DBDs.

To annotate regions in effector domains that have amino acid composition bias, we used
fLPS (Harrison, 2017) with the following parameters -m 5 -M 100 -o short, and considered those
regions that are enriched with a single or multiple amino acids. We considered only enriched
regions that were longer than 10 amino acids. Then, for each effector domain, a score of 1 was
assigned for each amino acid if there was at least one region inside the effector domain enriched
with that amino acid. Otherwise, it was 0. Finally, amino acid density was calculated for each

effector domain and DBD as the number of each amino acid divided by the domain length.

Liquid-Liquid Phase Separation (LLPS) prediction



To evaluate if effector domains are involved in LLPS we performed two different analyses. First,
we compared the LLPS promotion scores between TFs-AD, TFs-RD, and TFs-Bif. We used
PSAP (van Mierlo et al., 2021) to obtain the LLPS probability for each human TF. Similarly, we
obtained the LLPS score from another predictor based on pi-interactions (Vernon et al., 2018).
Then, we performed a Wilcoxon test to compare both the LLPS probability and score between
TFs-AD, TFs-RD, and TFs-Bif. Second, we evaluated the proportion of effector domains and
DBDs containing amino acid contexts predicted to promote LLPS. To do this, we obtained the
score for each amino acid in effector domains and DBDs (Vernon et al., 2018), and calculated
the proportion of ADs, RDs, and DBDs containing at least one amino acid with a score greater

than 4. Significance was evaluated using a proportion comparison test.

Effector domains in proteoforms

Transcripts with available experimental evidence (Minimum Transcription Support Level and in
GENCODE Basic) were obtained from the GENCODE v.30 database (Frankish et al., 2019).
Transcripts that are predicted to produce the same amino acid sequence, or sequences that differ
due to genetic variation, were merged into the same proteoform. For each TF, we calculated the
number of proteoforms that have (1) effector domain and DBD unaffected, (2) effector domain
affected, (3) DBD affected, and (4) both domains affected by deletions, truncations, or indels. A
similar calculation was performed for DBDs. The affected domains were identified by aligning
these domains with their different proteoforms using Needle-Wunschman global alignment in
BioPython (Cock et al., 2009) with the following parameters: gapopen = 10, gapextend = 0.5
matrix = BLOSUMG62. Then, we used an in-house Python script to calculate an identity-based
score for each alignment (effector domain or DBD versus proteoform). This was defined as the
number of identical amino acids divided by the length of the aligned sequence. If the identity-

based score of the domain in a proteoform was < 90%, the domain was considered affected in



the corresponding proteoform. A Kolmogorov-Smirnov test was performed between the
distributions of identity-based score of effector domains and DBDs. A domain was classified as
“‘intact domain” within a proteoform if the domain had an identity-based score higher than 90%
and at most only one substitution, as “domain with indels” if the identity-based score was 30-90%,

and as “deleted domain” if the identity-based score was lower than 30%.

To evaluate any bias due the domain length, we calculated the number of proteoforms
with the affected domain across bins of different domain lengths. The bin selected was 50 amino
acids with a step of 10 amino acids. For each bin, we calculated the proportion of proteoforms

with affected effector domains or DBDs.

Evolutionary and population conservation of effector domains

We used the Ensembl rest API to obtain the orthologs of TFs in 27 vertebrate species. Then, we
performed a global alignment between each domain (effector domains and DBDs) and each
ortholog TF using the BioPython package (Cock et al., 2009). If a TF had multiple effector domains
(or multiple DBDs), they were concatenated into one sequence. The alignment was performed
between each domain (effector domain or DBD) and each ortholog TF with the following
parameters gapopen =10, gapextend= 0.5 and BLOSUM62 matrix. Then, we assigned the
percentage identity to each alignment as the number of identical amino acids divided by the length
of the respective domain. To obtain the species dendogram, we retrieved the species relation
from the Ensembl project (Howe et al., 2021) and generated the dendogram using the package
“‘phytools” and “ape” in R v4.05. The divergence time between each species and Homo sapiens
was obtained from TimeTree (Kumar et al., 2017), and the amino acid conservation for both

effector domains and DBDs at each evolutionary time was represented.



To determine the density of genomic variants, we first obtained the genomic coordinates
of each effector domain, DBD, and the full length protein. To do this, we retrieved the ENST code
for each TF using the GENCODE.v38 database. When available, we used the UNIPROT ID of
each TF to find their respective ENST code. In other cases, we used an in-house Python script to
map the amino acid sequences to each isoform reported in GENCODE until we found the perfect
match. Then, we used these transcript IDs to obtain the nucleotide coordinates for each exon,
and lastly, obtain the nucleotide coordinate for each domain (ADs, RDs, Bifs, DBDs) from their
respective amino acid positions. All nucleotides coordinates were translated to their respective

amino acid sequence as a verification step.

To map the genomic variants into the domains, we downloaded the gnomAD database
(Karczewski et al., 2020) and used “Bedtools intersect” to determine the variants in each effector
domain, DBD, and full length protein. Then, we removed variants that correspond to more than
one nucleotide and classified the single nucleotide variants into synonymous and non-
synonymous using a Python script. The density of non-synonymous variants for each domain
(AD, RD, DBD) and full length TF were calculated as the number of non-synonymous variants in
the corresponding amino acid region divided by its length in nucleotides. Multiple effector domains
(or DBDs) in a TF were concatenated and considered as a unique domain. Variants residing in
the same genomic position were considered different. To determine statistical enrichment of
variants in the effector domain versus DBD of a TF, we performed a Fisher's exact test
considering the number of variant and non-variant nucleotides in each domain, and performed a

Benjamini-Holchberg correction with a cutoff of 0.1 to correct for multiple hypothesis testing.

Density of mutations in effector domains



To evaluate the density of mutations in effector domains and DBDs associated with diseases and
cancer, we downloaded mutations from the ClinVar (Landrum et al., 2020) and COSMIC (Tate et
al., 2019) databases, respectively. We calculated the density of mutations in the effector domains,
DBDs, and full length TF from ClinVar and COSMIC mutations as we did for gnomAD genetic
variants. Only variants that were annotated as “Pathogenic” in COSMIC, and “Pathogenic” and
“Likely Pathogenic” in the ClinVar database were considered. In addition, we evaluated whether
mutations in effector domains and DBDs are associated with different cancer types. To do this,
we considered the “primary site“ as the main cancer type of each somatic mutation in each sample
using the COSMIC annotation file. In cases where a TF contained more than one effector domain,
these were concatenated in one group to be evaluated as effector domains. Multiple DBDs in a
TF were concatenated in a similar manner. In cases where a mutation was associated with
multiple cancer types, all of these were considered. Then, we performed a Fisher’'s exact test for
each TF comparing the number of mutations associated with different cancer types in effector
domains and DBDs and p-values were adjusted by Benjamini-Hochberg correction considering a

cutoff of 0.1.

Classification of effector domains

To classify effector domains, we built 6 similarity matrices (6 x 924 x 924) leveraging different
characteristics of effector domains. (1) Sequence similarity matrix: We calculated a sequence
identity score between 0-1 for each pair of effector domains using a global Needleman-Wunsch
alignment. All identity scores lower than 0.5 were replaced with 0 to avoid high background noise
when clustering. (2) Regulatory function matrix: We assigned a score of 1 for a pair of effector
domains that have the same regulatory function (AD-AD, RD-RD, Bif-Bif), a score of 0.5 if the

effector domains share a regulatory function (AD-Bif, RD-Bif), and a score of 0 if the effector



domains do not share a regulatory function (AD-RD). (3) Amino acid composition matrix: First, we
used flps (https://github.com/pmharrison/flps) to detect low complexity sequences (i.e., enriched
amino acids in short stretch regions) in each effector domain. The software was run using default
parameters and we considered regions that were enriched with single and multiple amino acids.
Then, we generated a matrix where rows are effector domains, columns are amino acids, and the
values 1 or O indicate enrichment or no enrichment of the amino acid in the effector domain,
respectively. Finally, we calculated the Jaccard index (Fuxman Bass et al., 2013) for each pair of
effector domains to generate the amino acid composition similarity matrix. (4-6) Charge ,
disorder, and hydrophobicity matrices: First, we calculated the charge, disorder, and
hydrophobicity for each effector domain. Then, for each parameter, we generated a matrix where
a similarity score was calculated for each pair of effector domains as follows (example shown for

charge calculation):

|charge(x,) — charge(x,)|
Max(charge dif ferences)

Scorecharge (xlrxz) =1-

where x1 = effector domain 1 and x2 = effector domain 2

For example if two effector domains have charge values of 0.7 and 0.3 and the maximum
differences in all possible combinations of effector domains is 1.4, the charge similarity score

would be 1 - (0.4/1.4) = 0.714.

To give each matrix a similar weight, we normalized each matrix by dividing each value
by the standard deviation between the values with the corresponding matrix. Then, we generated
an effector domain similarity matrix by adding each of these four matrices with the following
weights: Sequence Similarity Matrix = 2, Regulatory Function Matrix = 2, Amino acid composition
matrix = 1, Charge matrix = 1, Disorder matrix = 1, Hydrophobicity matrix = 1. This matrix was

then converted to a distance matrix using the “sim2dist” function in R v4.05. Using this effector



domain distance matrix, we performed hierarchical clustering using the “hclust” function in R with
the “complete” agglomeration method. To select an appropriate number of clusters, we obtained
clusters using the “cutree” function with the parameter k from 2 to 100 and selected the minimal
k value where the maximum number of effector domains in any cluster was less than 100 (k =
63). Only clusters containing more than 10 effector domains are shown and included in the
analyses. For each of the 20 clusters obtained, we showed eight characteristics: (1) the number
of effector domains, their median (2) charge, (3) hydrophobicity, (4) disorder, and (5) length, (6)
enrichment of amino acids, (7) proportion of domains in each TF family, and (8) proportion of

domains interacting with cofactors.

To annotate interactions with cofactors, we first downloaded the list of cofactors from
AnimalTFDB 3.0 (Hu et al., 2019) and protein-protein interactions between TFs and cofactors
from HuRI (Luck et al., 2020), Lit-BM (Luck et al., 2020), and BioGRID (Oughtred et al., 2021)
databases. From BioGRID, we only considered interactions with at least one report of physical

evidence.

References

Cock, P.J., Antao, T., Chang, J.T., Chapman, B.A., Cox, C.J., Dalke, A., Friedberg, I.,
Hamelryck, T., Kauff, F., Wilczynski, B., et al. (2009). Biopython: freely available Python tools
for computational molecular biology and bioinformatics. Bioinformatics 25, 1422-1423.

Finn, R.D., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Mistry, J., Mitchell, A.L., Potter, S.C., Punta,
M., Qureshi, M., Sangrador-Vegas, A., et al. (2016). The Pfam protein families database:
towards a more sustainable future. Nucleic Acids Res 44, D279-285.

Frankish, A., Diekhans, M., Ferreira, A.M., Johnson, R., Jungreis, I., Loveland, J., Mudge, J.M.,
Sisu, C., Wright, J., Armstrong, J., et al. (2019). GENCODE reference annotation for the human
and mouse genomes. Nucleic Acids Res 47, D766-D773.

Fuxman Bass, J.l., Diallo, A., Nelson, J., Soto, J.M., Myers, C.L., and Walhout, A.J. (2013).

Using networks to measure similarity between genes: association index selection. Nat Methods
10, 1169-1176.

10



Ginell, G.M., and Holehouse, A.S. (2020). Analyzing the Sequences of Intrinsically Disordered
Regions with CIDER and localCIDER. Methods Mol Biol 2141, 103-126.

Harrison, P.M. (2017). fLPS: Fast discovery of compositional biases for the protein universe.
BMC Bioinformatics 18, 476.

Hornbeck, P.V., Kornhauser, J.M., Latham, V., Murray, B., Nandhikonda, V., Nord, A.,
Skrzypek, E., Wheeler, T., Zhang, B., and Gnad, F. (2019). 15 years of PhosphoSitePlus(R):
integrating post-translationally modified sites, disease variants and isoforms. Nucleic Acids Res
47, D433-D441.

Howe, K.L., Achuthan, P., Allen, J., Allen, J., Alvarez-Jarreta, J., Amode, M.R., Armean, |.M.,
Azov, A.G., Bennett, R., Bhai, J., et al. (2021). Ensembl 2021. Nucleic Acids Res 49, D884-
D891.

Hu, H., Miao, Y.R., Jia, L.H., Yu, Q.Y., Zhang, Q., and Guo, A.Y. (2019). AnimalTFDB 3.0: a
comprehensive resource for annotation and prediction of animal transcription factors. Nucleic
Acids Res 47, D33-D38.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool,
K., Bates, R., Zidek, A., Potapenko, A., et al. (2021). Highly accurate protein structure prediction
with AlphaFold. Nature.

Karczewski, K.J., Francioli, L.C., Tiao, G., Cummings, B.B., Alfoldi, J., Wang, Q., Collins, R.L.,
Laricchia, K.M., Ganna, A., Birnbaum, D.P., et al. (2020). The mutational constraint spectrum
quantified from variation in 141,456 humans. Nature 587, 434-443.

Kumar, S., Stecher, G., Suleski, M., and Hedges, S.B. (2017). TimeTree: A Resource for
Timelines, Timetrees, and Divergence Times. Mol Biol Evol 34, 1812-1819.

Lambert, S.A., Jolma, A., Campitelli, L.F., Das, P.K,, Yin, Y., Albu, M., Chen, X., Taipale, J.,
Hughes, T.R., and Weirauch, M.T. (2018). The Human Transcription Factors. Cell 172, 650-665.

Lambert, S.A., Yang, AW.H., Sasse, A., Cowley, G., Albu, M., Caddick, M.X., Morris, Q.D.,
Weirauch, M.T., and Hughes, T.R. (2019). Similarity regression predicts evolution of
transcription factor sequence specificity. Nat Genet 571, 981-989.

Landrum, M.J., Chitipiralla, S., Brown, G.R., Chen, C., Gu, B., Hart, J., Hoffman, D., Jang, W.,
Kaur, K., Liu, C., et al. (2020). ClinVar: improvements to accessing data. Nucleic Acids Res 48,
D835-D844.

Luck, K., Kim, D.K., Lambourne, L., Spirohn, K., Begg, B.E., Bian, W., Brignall, R., Cafarelli, T.,
Campos-Laborie, F.J., Charloteaux, B., et al. (2020). A reference map of the human binary
protein interactome. Nature 580, 402-408.

Oughtred, R, Rust, J., Chang, C., Breitkreutz, B.J., Stark, C., Willems, A., Boucher, L., Leung,

G., Kolas, N., Zhang, F., et al. (2021). The BioGRID database: A comprehensive biomedical
resource of curated protein, genetic, and chemical interactions. Protein Sci 30, 187-200.

11



Tate, J.G., Bamford, S., Jubb, H.C., Sondka, Z., Beare, D.M., Bindal, N., Boutselakis, H., Cole,
C.G., Creatore, C., Dawson, E., et al. (2019). COSMIC: the Catalogue Of Somatic Mutations In
Cancer. Nucleic Acids Res 47, D941-D947.

UniProt Consortium. (2021). UniProt: the universal protein knowledgebase in 2021. Nucleic
Acids Res 49, D480-D489.

van Mierlo, G., Jansen, J.R.G., Wang, J., Poser, I., van Heeringen, S.J., and Vermeulen, M.
(2021). Predicting protein condensate formation using machine learning. Cell Rep 34, 108705.

Vernon, R.M., Chong, P.A., Tsang, B., Kim, T.H., Bah, A., Farber, P., Lin, H., and Forman-Kay,

J.D. (2018). Pi-Pi contacts are an overlooked protein feature relevant to phase separation. Elife
7.

12



